When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Thorium-based nuclear power - Wikipedia

    en.wikipedia.org/wiki/Thorium-based_nuclear_power

    A sample of thorium. Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium.A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle [Note 1] —including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced ...

  3. Thorium fuel cycle - Wikipedia

    en.wikipedia.org/wiki/Thorium_fuel_cycle

    The thorium fuel cycle has several potential advantages over a uranium fuel cycle, including thorium's greater abundance, superior physical and nuclear properties, reduced plutonium and actinide production, [1] and better resistance to nuclear weapons proliferation when used in a traditional light water reactor [1] [2] though not in a molten ...

  4. Breeder reactor - Wikipedia

    en.wikipedia.org/wiki/Breeder_reactor

    Breeder reactors could, in principle, extract almost all of the energy contained in uranium or thorium, decreasing fuel requirements by a factor of 100 compared to widely used once-through light water reactors, which extract less than 1% of the energy in the actinide metal (uranium or thorium) mined from the earth. [11]

  5. Liquid fluoride thorium reactor - Wikipedia

    en.wikipedia.org/wiki/Liquid_fluoride_thorium...

    A two fluid reactor that has thorium in the fuel salt is sometimes called a "one and a half fluid" reactor, or 1.5 fluid reactor. [26] This is a hybrid, with some of the advantages and disadvantages of both 1 fluid and 2 fluid reactors. Like the 1 fluid reactor, it has thorium in the fuel salt, which complicates the fuel processing.

  6. India's three-stage nuclear power programme - Wikipedia

    en.wikipedia.org/wiki/India's_three-stage_nuclear...

    Monazite powder, a rare earth and thorium phosphate mineral, is the primary source of the world's thorium. India's three-stage nuclear power programme was formulated by Homi Bhabha, the well-known physicist, in the 1950s to secure the country's long term energy independence, through the use of uranium and thorium reserves found in the monazite sands of coastal regions of South India.

  7. Thorium-232 - Wikipedia

    en.wikipedia.org/wiki/Thorium-232

    Thorium-232 is a fertile material; it can capture a neutron to form thorium-233, which subsequently undergoes two successive beta decays to uranium-233, which is fissile. As such, it has been used in the thorium fuel cycle in nuclear reactors; various prototype thorium-fueled reactors have been designed. However, as of 2024, thorium fuel has ...

  8. Fuji Molten Salt Reactor - Wikipedia

    en.wikipedia.org/wiki/Fuji_Molten_Salt_Reactor

    As a breeder reactor, it converts thorium into the nuclear fuel uranium-233. To achieve reasonable neutron economy, the chosen single-salt design results in significantly larger feasible size [ clarification needed ] than a two-salt reactor (where blanket is separated from core, which involves graphite-tube manufacturing/sealing complications).

  9. Advanced heavy-water reactor - Wikipedia

    en.wikipedia.org/wiki/Advanced_heavy-water_reactor

    The advanced heavy-water reactor (AHWR) or AHWR-300 is the latest Indian design for a next-generation nuclear reactor that burns thorium in its fuel core. It is slated to form the third stage in India's three-stage fuel-cycle plan. [1]