Search results
Results From The WOW.Com Content Network
The salt and hash are then stored in the database. To later test if a password a user enters is correct, the same process can be performed on it (appending that user's salt to the password and calculating the resultant hash): if the result does not match the stored hash, it could not have been the correct password that was entered.
DK = PBKDF2(PRF, Password, Salt, c, dkLen) where: PRF is a pseudorandom function of two parameters with output length hLen (e.g., a keyed HMAC) Password is the master password from which a derived key is generated; Salt is a sequence of bits, known as a cryptographic salt; c is the number of iterations desired; dkLen is the desired bit-length ...
It is like a salt in that it is a randomized value that is added to a password hash, and it is similar to an encryption key in that it should be kept secret. A pepper performs a comparable role to a salt or an encryption key , but while a salt is not secret (merely unique) and can be stored alongside the hashed output, a pepper is secret and ...
The input to the bcrypt function is the password string (up to 72 bytes), a numeric cost, and a 16-byte (128-bit) salt value. The salt is typically a random value.
For instance, MD5-Crypt uses a 1000 iteration loop that repeatedly feeds the salt, password, and current intermediate hash value back into the underlying MD5 hash function. [4] The user's password hash is the concatenation of the salt value (which is not secret) and the final hash.
Modern password-based key derivation functions, such as PBKDF2, use a cryptographic hash, such as SHA-2, a longer salt (e.g. 64 bits) and a high iteration count. The U.S. National Institute of Standards and Technology (NIST) recommends a minimum iteration count of 10,000.
The server appends to this client nonce its own nonce s-nonce, and adds it to the server-first message, which also contains a salt used by the server for salting the user's password hash, and an iteration count iteration-count. client-final
More generally, k-independent hashing functions provide a secure message authentication code as long as the key is used less than k times for k-ways independent hashing functions. Message authentication codes and data origin authentication have been also discussed in the framework of quantum cryptography.