When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a 1 {\displaystyle a_{1}} and the common difference of successive members is d {\displaystyle d} , then the n {\displaystyle n} -th term of the sequence ( a n {\displaystyle a_{n ...

  3. Salem–Spencer set - Wikipedia

    en.wikipedia.org/wiki/Salem–Spencer_set

    This result became a special case of Szemerédi's theorem on the density of sets of integers that avoid longer arithmetic progressions. [4] To distinguish Roth's bound on Salem–Spencer sets from Roth's theorem on Diophantine approximation of algebraic numbers , this result has been called Roth's theorem on arithmetic progressions . [ 11 ]

  4. Harmonic progression (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_progression...

    In mathematics, a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression, which is also known as an arithmetic sequence. Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms.

  5. Logarithmic scale - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_scale

    Equally spaced values on a logarithmic scale have exponents that increment uniformly. Examples of equally spaced values are 10, 100, 1000, 10000, and 100000 (i.e., 10 1, 10 2, 10 3, 10 4, 10 5) and 2, 4, 8, 16, and 32 (i.e., 2 1, 2 2, 2 3, 2 4, 2 5). Exponential growth curves are often depicted on a logarithmic scale graph.

  6. Generalized arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Generalized_arithmetic...

    For example, the sequence,,,,, … is not an arithmetic progression, but is instead generated by starting with 17 and adding either 3 or 5, thus allowing multiple common differences to generate it. A semilinear set generalizes this idea to multiple dimensions – it is a set of vectors of integers, rather than a set of integers.

  7. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    Sequences dn + a with odd d are often ignored because half the numbers are even and the other half is the same numbers as a sequence with 2d, if we start with n = 0. For example, 6 n + 1 produces the same primes as 3 n + 1, while 6 n + 5 produces the same as 3 n + 2 except for the only even prime 2.

  8. Approximation theory - Wikipedia

    en.wikipedia.org/wiki/Approximation_theory

    The objective is to make the approximation as close as possible to the actual function, typically with an accuracy close to that of the underlying computer's floating point arithmetic. This is accomplished by using a polynomial of high degree , and/or narrowing the domain over which the polynomial has to approximate the function.

  9. Van der Waerden's theorem - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waerden's_theorem

    Van der Waerden's theorem is a theorem in the branch of mathematics called Ramsey theory.Van der Waerden's theorem states that for any given positive integers r and k, there is some number N such that if the integers {1, 2, ..., N} are colored, each with one of r different colors, then there are at least k integers in arithmetic progression whose elements are of the same color.