Search results
Results From The WOW.Com Content Network
Tuplets may be counted, most often at extremely slow tempos, using the least common multiple (LCM) between the original and tuplet divisions. For example, with a 3-against-2 tuplet (triplets) the LCM is 6. Since 6 ÷ 2 = 3 and 6 ÷ 3 = 2 the quarter notes fall every three counts (overlined) and the triplets every two (underlined):
A 1‑tuple is called a single (or singleton), a 2‑tuple is called an ordered pair or couple, and a 3‑tuple is called a triple (or triplet). The number n can be any nonnegative integer . For example, a complex number can be represented as a 2‑tuple of reals, a quaternion can be represented as a 4‑tuple, an octonion can be represented as ...
This article is all about the musical usage of "tuple", but the word is used in other contexts too. For example in mathematics see the article about Prime k-tuple. In computer science in general it's used for any combination of fixed set of properties used together (similar to the math usage), as a generalisation of pair, triplet, quadruplets, etc.
A result is called "deep" if its proof requires concepts and methods that are advanced beyond the concepts needed to formulate the result. For example, the prime number theorem — originally proved using techniques of complex analysis — was once thought to be a deep result until elementary proofs were found. [1]
Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional vectors . (Technically, this is an abuse of terminology since an ordered pair need not be an element of a vector space .)
In number theory, a prime k-tuple is a finite collection of values representing a repeatable pattern of differences between prime numbers.For a k-tuple (a, b, …), the positions where the k-tuple matches a pattern in the prime numbers are given by the set of integers n such that all of the values (n + a, n + b, …) are prime.
For example, quotient set, quotient group, quotient category, etc. 3. In number theory and field theory, / denotes a field extension, where F is an extension field of the field E. 4. In probability theory, denotes a conditional probability. For example, (/) denotes the probability of A, given that B occurs.
Cartesian coordinates identify points of the Euclidean plane with pairs of real numbers. In mathematics, the real coordinate space or real coordinate n-space, of dimension n, denoted R n or , is the set of all ordered n-tuples of real numbers, that is the set of all sequences of n real numbers, also known as coordinate vectors.