Search results
Results From The WOW.Com Content Network
Spirometry (meaning the measuring of breath) is the most common of the pulmonary function tests (PFTs). It measures lung function, specifically the amount (volume) and/or speed (flow) of air that can be inhaled and exhaled.
Output of a spirometer. Vital capacity (VC) is the maximum amount of air a person can expel from the lungs after a maximum inhalation. It is equal to the sum of inspiratory reserve volume, tidal volume, and expiratory reserve volume. It is approximately equal to Forced Vital Capacity (FVC). [1] [2]
Pulmonary function testing (PFT) is a complete evaluation of the respiratory system including patient history, physical examinations, and tests of pulmonary function. The primary purpose of pulmonary function testing is to identify the severity of pulmonary impairment. [1]
The amount of He in the spirometer is known at the beginning of the test (concentration × volume = amount). The patient is then asked to breathe (normal breaths) in the mixture starting from FRC (functional residual capacity), which is the gas volume in the lung after a normal breath out. The spirometer measures helium concentration.
In fluid dynamics, the Hagen–Poiseuille equation is a physical law that gives the pressure drop in a fluid flowing through a long cylindrical pipe. The assumptions of the equation are that the flow is laminar viscous and incompressible and the flow is through a constant circular cross-section that is substantially longer than its diameter.
Pulmonary compliance is calculated using the following equation, where ΔV is the change in volume, and ΔP is the change in pleural pressure: = For example, if a patient inhales 500 mL of air from a spirometer with an intrapleural pressure before inspiration of −5 cm H 2 O and −10 cm H 2 O at the end of inspiration.
The peak expiratory flow (PEF), also called peak expiratory flow rate (PEFR) and peak flow measurement, [1] is a person's maximum speed of expiration, as measured with a peak flow meter, a small, hand-held device used to monitor a person's ability to breathe out air.
Lung volumes. Functional residual capacity (FRC) is the volume of air present in the lungs at the end of passive expiration. [1] At FRC, the opposing elastic recoil forces of the lungs and chest wall are in equilibrium and there is no exertion by the diaphragm or other respiratory muscles.