Search results
Results From The WOW.Com Content Network
Language designs that decouple inheritance from subtyping (interface inheritance) appeared as early as 1990; [21] a modern example of this is the Go programming language. Complex inheritance, or inheritance used within an insufficiently mature design, may lead to the yo-yo problem. When inheritance was used as a primary approach to structure ...
Multiple inheritance is a feature of some object-oriented computer programming languages in which an object or class can inherit features from more than one parent object or parent class. It is distinct from single inheritance, where an object or class may only inherit from one particular object or class.
In software development, the yo-yo problem is an anti-pattern that occurs when a programmer has to read and understand a program whose inheritance graph is so long and complicated that the programmer has to keep flipping between many different class definitions in order to follow the control flow of the program.
Composition over inheritance (or composite reuse principle) in object-oriented programming (OOP) is the principle that classes should favor polymorphic behavior and code reuse by their composition (by containing instances of other classes that implement the desired functionality) over inheritance from a base or parent class. [2]
The doctrine of composition over inheritance advocates implementing has-a relationships using composition instead of inheritance. For example, instead of inheriting from class Person, class Employee could give each Employee object an internal Person object, which it then has the opportunity to hide from external code even if class Person has ...
Open problems around exact algorithms by Gerhard J. Woeginger, Discrete Applied Mathematics 156 (2008) 397–405. The RTA list of open problems – open problems in rewriting. The TLCA List of Open Problems – open problems in area typed lambda calculus
All object-oriented programming (OOP) systems support encapsulation, [2] [3] but encapsulation is not unique to OOP. Implementations of abstract data types, modules, and libraries also offer encapsulation. The similarity has been explained by programming language theorists in terms of existential types. [4]
The bridge uses encapsulation, aggregation, and can use inheritance to separate responsibilities into different classes. When a class varies often, the features of object-oriented programming become very useful because changes to a program's code can be made easily with minimal prior knowledge about the program. The bridge pattern is useful ...