Search results
Results From The WOW.Com Content Network
An element that is a left or a right zero divisor is simply called a zero divisor. [2] An element a that is both a left and a right zero divisor is called a two-sided zero divisor (the nonzero x such that ax = 0 may be different from the nonzero y such that ya = 0). If the ring is commutative, then the left and right zero divisors are the same.
If one interprets the definition of divisor literally, every a is a divisor of 0, since one can take x = 0. Because of this, it is traditional to abuse terminology by making an exception for zero divisors: one calls an element a in a commutative ring a zero divisor if there exists a nonzero x such that ax = 0. [2]
In algebra, a domain is a nonzero ring in which ab = 0 implies a = 0 or b = 0. [1] ( Sometimes such a ring is said to "have the zero-product property".) Equivalently, a domain is a ring in which 0 is the only left zero divisor (or equivalently, the only right zero divisor).
Prime numbers have exactly 2 divisors, and highly composite numbers are in bold. 7 is a divisor of 42 because =, so we can say It can also be said that 42 is divisible by 7, 42 is a multiple of 7, 7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2, 3, −3.
Let R be an effective commutative ring.. There is an algorithm for testing if an element a is a zero divisor: this amounts to solving the linear equation ax = 0.; There is an algorithm for testing if an element a is a unit, and if it is, computing its inverse: this amounts to solving the linear equation ax = 1.
Every closed point p in X has the form Spec E for some finite extension field E of k, and the degree of p is defined to be the degree of E over k. Extending this by linearity gives the notion of degree for a divisor on X. If X is a projective curve over k, then the divisor of a nonzero rational function f on X has degree zero. [8]
First, this agrees with the definition that a domain is a ring in which 0 is the only zero divisor (in particular, 0 is required to be a zero divisor, which fails in the zero ring). Second, this way, for a positive integer n, the ring Z/nZ is a domain if and only if n is prime, but 1 is not prime.
Cancelling 0 from both sides yields =, a false statement. The fallacy here arises from the assumption that it is legitimate to cancel 0 like any other number, whereas, in fact, doing so is a form of division by 0. Using algebra, it is possible to disguise a division by zero [17] to obtain an invalid proof. For example: [18]