When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Von Neumann cardinal assignment - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann_cardinal...

    Also, is the smallest uncountable ordinal (to see that it exists, consider the set of equivalence classes of well-orderings of the natural numbers; each such well-ordering defines a countable ordinal, and is the order type of that set), is the smallest ordinal whose cardinality is greater than , and so on, and is the limit of for natural ...

  3. Cardinal assignment - Wikipedia

    en.wikipedia.org/wiki/Cardinal_assignment

    The goal of a cardinal assignment is to assign to every set A a specific, unique set that is only dependent on the cardinality of A. This is in accordance with Cantor 's original vision of cardinals: to take a set and abstract its elements into canonical "units" and collect these units into another set, such that the only thing special about ...

  4. Cardinality (data modeling) - Wikipedia

    en.wikipedia.org/wiki/Cardinality_(data_modeling)

    In this example, the three lines next to the song entity indicate that an artist can have many songs. The two vertical lines next to the artist entity indicate songs can only have one performer. In the real world, data modeling is critical because as the data grows voluminous, tables linked by keys must be used to speed up programmed retrieval ...

  5. Regular cardinal - Wikipedia

    en.wikipedia.org/wiki/Regular_cardinal

    The category < of sets of cardinality less than and all functions between them is closed under colimits of cardinality less than . κ {\displaystyle \kappa } is a regular ordinal (see below). Crudely speaking, this means that a regular cardinal is one that cannot be broken down into a small number of smaller parts.

  6. Count-distinct problem - Wikipedia

    en.wikipedia.org/wiki/Count-distinct_problem

    In computer science, the count-distinct problem [1] (also known in applied mathematics as the cardinality estimation problem) is the problem of finding the number of distinct elements in a data stream with repeated elements. This is a well-known problem with numerous applications.

  7. Many-to-many (data model) - Wikipedia

    en.wikipedia.org/wiki/Many-to-many_(data_model)

    For example, think of A as Authors, and B as Books. An Author can write several Books, and a Book can be written by several Authors. In a relational database management system, such relationships are usually implemented by means of an associative table (also known as join table, junction table or cross-reference table), say, AB with two one-to-many relationships A → AB and B → AB.

  8. Cofinality - Wikipedia

    en.wikipedia.org/wiki/Cofinality

    If admits a totally ordered cofinal subset, then we can find a subset that is well-ordered and cofinal in . Any subset of is also well-ordered. Two cofinal subsets of with minimal cardinality (that is, their cardinality is the cofinality of ) need not be order isomorphic (for example if = +, then both + and {+: <} viewed as subsets of have the countable cardinality of the cofinality of but are ...

  9. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    The notion of cardinality, as now understood, was formulated by Georg Cantor, the originator of set theory, in 1874–1884. Cardinality can be used to compare an aspect of finite sets. For example, the sets {1,2,3} and {4,5,6} are not equal, but have the same cardinality, namely three.