Search results
Results From The WOW.Com Content Network
The circle of forces, traction circle, friction circle, [1] or friction ellipse [2] [3] [4] is a useful way to think about the dynamic interaction between a vehicle's tire and the road surface. The diagram below shows the tire from above, so that the road surface lies in the xy - plane .
Fluid friction describes the friction between layers of a viscous fluid that are moving relative to each other. [7] [8] Lubricated friction is a case of fluid friction where a lubricant fluid separates two solid surfaces. [9] [10] [11] Skin friction is a component of drag, the force resisting the motion of a fluid across the surface of a body.
The static friction increases or decreases in response to the applied force up to an upper limit determined by the characteristics of the contact between the surface and the object. [ 3 ] A static equilibrium between two forces is the most usual way of measuring forces, using simple devices such as weighing scales and spring balances .
Tribology is the science and engineering of understanding friction, lubrication and wear phenomena for interacting surfaces in relative motion.It is highly interdisciplinary, drawing on many academic fields, including physics, chemistry, materials science, mathematics, biology and engineering. [1]
In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used in the Darcy–Weisbach equation, for the description of friction losses in pipe flow as well as open-channel flow.
The discovery and underlying research is usually attributed to Richard Stribeck [1] [2] [3] and Mayo D. Hersey, [4] [5] who studied friction in journal bearings for railway wagon applications during the first half of the 20th century; however, other researchers have arrived at similar conclusions before. The mechanisms along the Stribeck curve ...
The capstan equation [1] or belt friction equation, also known as Euler–Eytelwein formula [2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line is wound around a cylinder (a bollard, a winch or a capstan).
Classical results for a true frictional contact problem concern the papers by F.W. Carter (1926) and H. Fromm (1927). They independently presented the creep versus creep force relation for a cylinder on a plane or for two cylinders in steady rolling contact using Coulomb’s dry friction law (see below). [5]