Search results
Results From The WOW.Com Content Network
The sensible heat of a thermodynamic process may be calculated as the product of the body's mass (m) with its specific heat capacity (c) and the change in temperature (): =. Joule described sensible heat as the energy measured by a thermometer. Sensible heat and latent heat are not special forms of energy. Rather, they describe exchanges of ...
In an 1847 lecture entitled On Matter, Living Force, and Heat, James Prescott Joule characterized the terms latent heat and sensible heat as components of heat each affecting distinct physical phenomena, namely the potential and kinetic energy of particles, respectively.
phase change, thermodynamics (ratio of sensible heat to latent heat) ... fluid mechanics, power consumption by rotary agitators; resistance force versus inertia force)
Firstly, thermo-("of heat"; used in words such as thermometer) can be traced back to the root θέρμη therme, meaning "heat". Secondly, the word dynamics ("science of force [or power]") [22] can be traced back to the root δύναμις dynamis, meaning "power". [23] In 1849, the adjective thermo-dynamic is used by William Thomson. [24] [25]
The SI unit for heat capacity of an object is joule per kelvin (J/K or J⋅K −1). Since an increment of temperature of one degree Celsius is the same as an increment of one kelvin, that is the same unit as J/°C. The heat capacity of an object is an amount of energy divided by a temperature change, which has the dimension L 2 ⋅M⋅T −2 ...
A calorimeter can rely on measurement of sensible heat, which requires the existence of thermometers and measurement of temperature change in bodies of known sensible heat capacity under specified conditions; or it can rely on the measurement of latent heat, through measurement of masses of material that change phase, at temperatures fixed by ...
A federal judge on Monday walked back his order barring Oath Keepers founder Stewart Rhodes and seven other members of the right-wing extremist group from entering Washington, D.C., without the ...
The system always contains the same amount of matter, but (sensible) heat and (boundary) work can be exchanged across the boundary of the system. Whether a system can exchange heat, work, or both is dependent on the property of its boundary. Adiabatic boundary – not allowing any heat exchange: A thermally isolated system