Search results
Results From The WOW.Com Content Network
Crystallization is the process by which solids form, where the atoms or molecules are highly organized into a structure known as a crystal.Some ways by which crystals form are precipitating from a solution, freezing, or more rarely deposition directly from a gas.
Other air molecules (e.g. oxygen, nitrogen) have lower mobilities and thus diffuse more slowly through the balloon wall. There is a concentration gradient in the balloon wall, because the balloon was initially filled with helium, and thus there is plenty of helium on the inside, but there is relatively little helium on the outside (helium is ...
Most liquids freeze by crystallization, formation of crystalline solid from the uniform liquid. This is a first-order thermodynamic phase transition, which means that as long as solid and liquid coexist, the temperature of the whole system remains very nearly equal to the melting point due to the slow removal of heat when in contact with air, which is a poor heat conductor.
For example, if the crystals are in a solution and the system is subject to shearing forces, small crystal nuclei could be sheared off a growing crystal, thus increasing the number of crystals in the system. So both primary and secondary nucleation increase the number of crystals in the system but their mechanisms are very different, and ...
Crystallization: This is the initial phase where the material to be purified is cooled. As it cools, high-purity crystals begin to form on the cooling surface. The purity is achieved because the impurities tend to remain in the liquid phase rather than being incorporated into the crystal structure.
The above mechanism considered crystallization from the melt, which is important for injection molding of plastic components. Another type of crystallization occurs upon extrusion used in making fibers and films. In this process, the polymer is forced through, e.g., a nozzle that creates tensile stress which partially aligns its molecules. Such ...
In some cases crystals do not form quickly and the solution remains supersaturated after cooling. This is because there is a thermodynamic barrier to the formation of a crystal in a liquid medium. Commonly this is overcome by adding a tiny crystal of the solute compound to the supersaturated solution, a process known as "seeding".
For example, if water is nucleating in supersaturated air, then is the free energy per unit of volume of water minus that of supersaturated air at the same pressure. As nucleation only occurs when the air is supersaturated, is always negative. The second term comes from the interface at surface of the nucleus, which is why it is proportional to ...