Search results
Results From The WOW.Com Content Network
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. [1]: 3 It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology.
Gas flow can be grouped in four regimes: For Kn≤0.001, flow is continuous, and the Navier–Stokes equations are applicable, from 0.001<Kn<0.1, slip flow occurs, from 0.1≤Kn<10, transitional flow occurs and for Kn≥10, free molecular flow occurs. [6] In free molecular flow, the pressure of the remaining gas can be considered as effectively ...
Then for an ideal gas the compressible Euler equations can be simply expressed in the mechanical or primitive variables specific volume, flow velocity and pressure, by taking the set of the equations for a thermodynamic system and modifying the energy equation into a pressure equation through this mechanical equation of state. At last, in ...
There are 2 body forces acting on the channel fluid, namely, gravity and friction: =, +, where f x,g is the body force due to gravity and f x,f is the body force due to friction. f x , g can be calculated using basic physics and trigonometry: [ 27 ] F g = sin ( θ ) g M {\displaystyle F_{g}=\sin(\theta )gM} where F g is the force of gravity ...
In mathematics, a flow formalizes the idea of the motion of particles in a fluid. Flows are ubiquitous in science, including engineering and physics. The notion of flow is basic to the study of ordinary differential equations. Informally, a flow may be viewed as a continuous motion of points over time.
Poiseuille flow in a cylinder of diameter h; the velocity field at height y is u(y).. Murray's original derivation uses the first set of assumptions described above. She begins with the Hagen–Poiseuille equation, which states that for fluid of dynamic viscosity μ, flowing laminarly through a cylindrical pipe of radius r and length l, the volumetric flow rate Q associated with a pressure ...
First steps towards solving the paradox were made by Saint-Venant, who modelled viscous fluid friction. Saint-Venant states in 1847: [11] But one finds another result if, instead of an ideal fluid – object of the calculations of the geometers of the last century – one uses a real fluid, composed of a finite number of molecules and exerting in its state of motion unequal pressure forces or ...
f stands for the Darcy friction factor. Its value depends on the flow's Reynolds number Re and on the pipe's relative roughness ε / D. The log function is understood to be base-10 (as is customary in engineering fields): if x = log(y), then y = 10 x. The ln function is understood to be base-e: if x = ln(y), then y = e x.