Ads
related to: planes lines and points worksheets answerstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is the empty set if the line is parallel to the plane but outside it. Otherwise, the line cuts through the plane at a single point.
In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines , which either is one point (sometimes called a vertex ) or does not exist (if the lines are parallel ).
Number line assumption. Every line is a set of points which can be put into a one-to-one correspondence with the real numbers. Any point can correspond with 0 (zero) and any other point can correspond with 1 (one). Dimension assumption. Given a line in a plane, there exists at least one point in the plane that is not on the line. Given a plane ...
Elements of 3D Plane-based GA, which includes planes, lines, and points. All elements are constructed from reflections in planes. Lines are a special case of rotations. Plane-based geometric algebra is an application of Clifford algebra to modelling planes, lines, points, and rigid transformations.
Displacement d (yellow arrow) and moment m (green arrow) of two points x,y on a line (in red). A line L in 3-dimensional Euclidean space is determined by two distinct points that it contains, or by two distinct planes that contain it (a plane-plane intersection).
Each line produces three possibilities per point: the point can be in one of the two open half-planes on either side of the line, or it can be on the line. Two points can be considered to be equivalent if they have the same classification with respect to all of the lines.