Search results
Results From The WOW.Com Content Network
Electromagnetic field; ... Electric field, field strength, flux density, potential gradient E = ... Defining equation (physical chemistry)
An electromagnetic field (also EM field) is a physical field, mathematical functions of position and time, representing the influences on and due to electric charges. [1] The field at any point in space and time can be regarded as a combination of an electric field and a magnetic field .
These two forces are described in terms of electromagnetic fields. Macroscopic charged objects are described in terms of Coulomb's law for electricity and Ampère's force law for magnetism; the Lorentz force describes microscopic charged particles. The electromagnetic force is responsible for many of the chemical and physical phenomena observed ...
If the matter field is taken so as to describe the interaction of electromagnetic fields with the Dirac electron given by the four-component Dirac spinor field ψ, the current and charge densities have form: [2] = † = †, where α are the first three Dirac matrices. Using this, we can re-write Maxwell's equations as:
The gauge field, which mediates the interaction between the charged spin-1/2 fields, is the electromagnetic field. The QED Lagrangian for a spin-1/2 field interacting with the electromagnetic field in natural units gives rise to the action [27]: 78
The charge density appears in the continuity equation for electric current, and also in Maxwell's Equations. It is the principal source term of the electromagnetic field; when the charge distribution moves, this corresponds to a current density. The charge density of molecules impacts chemical and separation processes.
where E is the electric field, dA is a vector representing an infinitesimal element of area of the surface, [note 2] and · represents the dot product of two vectors. In a curved spacetime, the flux of an electromagnetic field through a closed surface is expressed as
Electric charges produce electric fields. [2] A moving charge also produces a magnetic field. [3] The interaction of electric charges with an electromagnetic field (a combination of an electric and a magnetic field) is the source of the electromagnetic (or Lorentz) force, [4] which is one of the four fundamental interactions in physics.