When.com Web Search

  1. Ad

    related to: sudoku solver with explanation

Search results

  1. Results From The WOW.Com Content Network
  2. Sudoku solving algorithms - Wikipedia

    en.wikipedia.org/wiki/Sudoku_solving_algorithms

    Some hobbyists have developed computer programs that will solve Sudoku puzzles using a backtracking algorithm, which is a type of brute force search. [3] Backtracking is a depth-first search (in contrast to a breadth-first search), because it will completely explore one branch to a possible solution before moving to another branch.

  3. Sudoku - Wikipedia

    en.wikipedia.org/wiki/Sudoku

    The general problem of solving Sudoku puzzles on n 2 ×n 2 grids of n×n blocks is known to be NP-complete. [26] Many Sudoku solving algorithms , such as brute force -backtracking and dancing links can solve most 9×9 puzzles efficiently, but combinatorial explosion occurs as n increases, creating practical limits to the properties of Sudokus ...

  4. Mathematics of Sudoku - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_Sudoku

    The general problem of solving Sudoku puzzles on n 2 ×n 2 grids of n×n blocks is known to be NP-complete. [8] A puzzle can be expressed as a graph coloring problem. [9] The aim is to construct a 9-coloring of a particular graph, given a partial 9-coloring. The Sudoku graph has 81 vertices, one vertex for each cell.

  5. Sudoku code - Wikipedia

    en.wikipedia.org/wiki/Sudoku_code

    The constraints of Sudoku codes are non-linear: all symbols within a constraint (row, line, sub-grid) must be different from any other symbol within this constraint. Hence there is no all-zero codeword in Sudoku codes. Sudoku codes can be represented by probabilistic graphical model in which they take the form of a low-density parity-check code ...

  6. Glossary of Sudoku - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_Sudoku

    A Sudoku variant with prime N (7×7) and solution. (with Japanese symbols). Overlapping grids. The classic 9×9 Sudoku format can be generalized to an N×N row-column grid partitioned into N regions, where each of the N rows, columns and regions have N cells and each of the N digits occur once in each row, column or region.

  7. Backtracking - Wikipedia

    en.wikipedia.org/wiki/Backtracking

    Backtracking is an important tool for solving constraint satisfaction problems, [2] such as crosswords, verbal arithmetic, Sudoku, and many other puzzles. It is often the most convenient technique for parsing , [ 3 ] for the knapsack problem and other combinatorial optimization problems.

  8. Sudoku graph - Wikipedia

    en.wikipedia.org/wiki/Sudoku_graph

    Each row, column, or block of the Sudoku puzzle forms a clique in the Sudoku graph, whose size equals the number of symbols used to solve the puzzle. A graph coloring of the Sudoku graph using this number of colors (the minimum possible number of colors for this graph) can be interpreted as a solution to the puzzle.

  9. Killer sudoku - Wikipedia

    en.wikipedia.org/wiki/Killer_Sudoku

    Killer sudoku (also killer su doku, sumdoku, sum doku, sumoku, addoku, or samunanpure サムナンプレ sum-num(ber) pla(ce)) is a puzzle that combines elements of sudoku and kakuro. Despite the name, the simpler killer sudokus can be easier to solve than regular sudokus, depending on the solver's skill at mental arithmetic ; the hardest ones ...