When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  3. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    An infinitesimal rotation matrix or differential rotation matrix is a matrix representing an infinitely small rotation. While a rotation matrix is an orthogonal matrix = representing an element of () (the special orthogonal group), the differential of a rotation is a skew-symmetric matrix = in the tangent space (the special orthogonal Lie ...

  4. Infinitesimal rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Infinitesimal_rotation_matrix

    An infinitesimal rotation matrix or differential rotation matrix is a matrix representing an infinitely small rotation.. While a rotation matrix is an orthogonal matrix = representing an element of () (the special orthogonal group), the differential of a rotation is a skew-symmetric matrix = in the tangent space (the special orthogonal Lie algebra), which is not itself a rotation matrix.

  5. Rotation operator (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_operator_(quantum...

    From linear algebra one knows that a certain matrix can be represented in another basis through the transformation ′ = where is the basis transformation matrix. If the vectors b {\displaystyle b} respectively c {\displaystyle c} are the z-axis in one basis respectively another, they are perpendicular to the y-axis with a certain angle t ...

  6. Random matrix - Wikipedia

    en.wikipedia.org/wiki/Random_matrix

    In nuclear physics, random matrices were introduced by Eugene Wigner to model the nuclei of heavy atoms. [1] [2] Wigner postulated that the spacings between the lines in the spectrum of a heavy atom nucleus should resemble the spacings between the eigenvalues of a random matrix, and should depend only on the symmetry class of the underlying evolution. [4]

  7. Circulant matrix - Wikipedia

    en.wikipedia.org/wiki/Circulant_matrix

    An circulant matrix takes the form = [] or the transpose of this form (by choice of notation). If each c i {\displaystyle c_{i}} is a p × p {\displaystyle p\times p} square matrix , then the n p × n p {\displaystyle np\times np} matrix C {\displaystyle C} is called a block-circulant matrix .

  8. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...

  9. Shear mapping - Wikipedia

    en.wikipedia.org/wiki/Shear_mapping

    Thus every shear matrix has an inverse, and the inverse is simply a shear matrix with the shear element negated, representing a shear transformation in the opposite direction. In fact, this is part of an easily derived more general result: if S is a shear matrix with shear element λ, then S n is a shear matrix whose shear element is simply nλ.