When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rate (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rate_(mathematics)

    In mathematics, a rate is the quotient of two quantities, often represented as a fraction. [1] If the divisor (or fraction denominator) in the rate is equal to one expressed as a single unit, and if it is assumed that this quantity can be changed systematically (i.e., is an independent variable), then the dividend (the fraction numerator) of the rate expresses the corresponding rate of change ...

  3. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    For convenience, consider contact with the spring occurs at t = 0, then the integral of the product of the distance x and the x-velocity, xv x dt, over time t is ⁠ 1 / 2 ⁠ x 2. The work is the product of the distance times the spring force, which is also dependent on distance; hence the x 2 result.

  4. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    He used a ramp to study rolling balls, the ramp slowing the acceleration enough to measure the time taken for the ball to roll a known distance. [1] [2] He measured elapsed time with a water clock, using an "extremely accurate balance" to measure the amount of water. [note 1]

  5. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F ...

  6. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The speed attained during free fall is proportional to the elapsed time, and the distance traveled is proportional to the square of the elapsed time. [40] Importantly, the acceleration is the same for all bodies, independently of their mass. This follows from combining Newton's second law of motion with his law of universal gravitation.

  7. Angular velocity - Wikipedia

    en.wikipedia.org/wiki/Angular_velocity

    In physics, angular velocity (symbol ω or , the lowercase Greek letter omega), also known as the angular frequency vector, [1] is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates (spins or revolves) around an axis of rotation and how fast the axis itself changes direction.

  8. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    The growth rate of output is the time derivative of the flow of output divided by output itself. The growth rate of the labor force is the time derivative of the labor force divided by the labor force itself. And sometimes there appears a time derivative of a variable which, unlike the examples above, is not measured in units of currency:

  9. Angular frequency - Wikipedia

    en.wikipedia.org/wiki/Angular_frequency

    A sphere rotating around an axis. Points farther from the axis move faster, satisfying ω = v / r.. In physics, angular frequency (symbol ω), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine function (for example, in oscillations and waves).