Search results
Results From The WOW.Com Content Network
In liquid chromatography, the mobile phase velocity is taken as the exit velocity, that is, the ratio of the flow rate in ml/second to the cross-sectional area of the ‘column-exit flow path.’ For a packed column, the cross-sectional area of the column exit flow path is usually taken as 0.6 times the cross-sectional area of the column.
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Flow velocity vector field : u = (,) m s −1 [L][T] −1 Velocity pseudovector field : ω = s −1 [T] −1 ...
Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. [ 1 ]
In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.
The components of the sample move through the column, each at a different velocity, which are a function of specific physical interactions with the adsorbent, the stationary phase. The velocity of each component depends on its chemical nature, on the nature of the stationary phase (inside the column) and on the composition of the mobile phase.
and so generally depends on the generalized velocities and coordinates. Since we are free to specify the initial values of the generalized coordinates and velocities separately, the generalized coordinates q j and velocities dq j /dt can be treated as independent variables.
A twist is a screw used to represent the velocity of a rigid body as an angular velocity around an axis and a linear velocity along this axis. All points in the body have the same component of the velocity along the axis, however the greater the distance from the axis the greater the velocity in the plane perpendicular to this axis.
Volumetric flow rate is defined by the limit [3] = ˙ = =, that is, the flow of volume of fluid V through a surface per unit time t.. Since this is only the time derivative of volume, a scalar quantity, the volumetric flow rate is also a scalar quantity.