When.com Web Search

  1. Ad

    related to: calculus of variations for dummies pdf book 2 release year

Search results

  1. Results From The WOW.Com Content Network
  2. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Marston Morse applied calculus of variations in what is now called Morse theory. [6] Lev Pontryagin, Ralph Rockafellar and F. H. Clarke developed new mathematical tools for the calculus of variations in optimal control theory. [6] The dynamic programming of Richard Bellman is an alternative to the calculus of variations. [7] [8] [9] [c]

  3. Direct method in the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Direct_method_in_the...

    In mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional, [1] introduced by Stanisław Zaremba and David Hilbert around 1900. The method relies on methods of functional analysis and topology. As well as being used to prove the existence of ...

  4. Fundamental lemma of the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Fundamental_lemma_of_the...

    In mathematics, specifically in the calculus of variations, a variation δf of a function f can be concentrated on an arbitrarily small interval, but not a single point. Accordingly, the necessary condition of extremum ( functional derivative equal zero) appears in a weak formulation (variational form) integrated with an arbitrary function δf .

  5. Category:Calculus of variations - Wikipedia

    en.wikipedia.org/.../Category:Calculus_of_variations

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  6. Carus Mathematical Monographs - Wikipedia

    en.wikipedia.org/wiki/Carus_Mathematical_Monographs

    Calculus of Variations, by G. A. Bliss (out of print) Analytic Functions of a Complex Variable, by D. R. Curtiss (out of print) Mathematical Statistics, by H. L. Rietz (out of print) Projective Geometry, by J. W. Young (out of print) A History of Mathematics in America before 1900, by D. E. Smith and Jekuthiel Ginsburg (out of print)

  7. Malliavin calculus - Wikipedia

    en.wikipedia.org/wiki/Malliavin_calculus

    Malliavin introduced Malliavin calculus to provide a stochastic proof that Hörmander's condition implies the existence of a density for the solution of a stochastic differential equation; Hörmander's original proof was based on the theory of partial differential equations.

  8. Functional derivative - Wikipedia

    en.wikipedia.org/wiki/Functional_derivative

    In the calculus of variations, functionals are usually expressed in terms of an integral of functions, their arguments, and their derivatives. In an integrand L of a functional, if a function f is varied by adding to it another function δf that is arbitrarily small, and the resulting integrand is expanded in powers of δf , the coefficient of ...

  9. Variational principle - Wikipedia

    en.wikipedia.org/wiki/Variational_principle

    For example, the problem of determining the shape of a hanging chain suspended at both ends—a catenary—can be solved using variational calculus, and in this case, the variational principle is the following: The solution is a function that minimizes the gravitational potential energy of the chain.