When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electron configurations of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_configurations_of...

    This website is also cited in the CRC Handbook as source of Section 1, subsection Electron Configuration of Neutral Atoms in the Ground State. 91 Pa : [Rn] 5f 2 (3 H 4) 6d 7s 2; 92 U : [Rn] 5f 3 (4 I o 9/2) 6d 7s 2; 93 Np : [Rn] 5f 4 (5 I 4) 6d 7s 2; 103 Lr : [Rn] 5f 14 7s 2 7p 1 question-marked; 104 Rf : [Rn] 5f 14 6d 2 7s 2 question-marked

  3. Multiplicity (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(chemistry)

    When S > L there are only 2L+1 orientations of total angular momentum possible, ranging from S+L to S-L. [2] [3] The ground state of the nitrogen atom is a 4 S state, for which 2S + 1 = 4 in a quartet state, S = 3/2 due to three unpaired electrons. For an S state, L = 0 so that J can only be 3/2 and there is only one level even though the ...

  4. Ground state - Wikipedia

    en.wikipedia.org/wiki/Ground_state

    The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. In quantum field theory, the ground state is usually called the vacuum state or the vacuum.

  5. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    The configuration that corresponds to the lowest electronic energy is called the ground state. Any other configuration is an excited state. As an example, the ground state configuration of the sodium atom is 1s 2 2s 2 2p 6 3s 1, as deduced from the Aufbau principle (see below).

  6. Hund's rule of maximum multiplicity - Wikipedia

    en.wikipedia.org/wiki/Hund's_Rule_of_Maximum...

    For example, the nitrogen atom ground state has three unpaired electrons of parallel spin, so that the total spin is 3/2 and the multiplicity is 4. The lower energy and increased stability of the atom arise because the high-spin state has unpaired electrons of parallel spin, which must reside in different spatial orbitals according to the Pauli ...

  7. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    Hybridisation describes the bonding of atoms from an atom's point of view. For a tetrahedrally coordinated carbon (e.g., methane CH 4), the carbon should have 4 orbitals directed towards the 4 hydrogen atoms. Carbon's ground state configuration is 1s 2 2s 2 2p 2 or more easily read:

  8. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    In quantum mechanics, an energy level is degenerate if it corresponds to two or more different measurable states of a quantum system.Conversely, two or more different states of a quantum mechanical system are said to be degenerate if they give the same value of energy upon measurement.

  9. Spectroscopic notation - Wikipedia

    en.wikipedia.org/wiki/Spectroscopic_notation

    This notation is used to specify electron configurations and to create the term symbol for the electron states in a multi-electron atom. When writing a term symbol, the above scheme for a single electron's orbital quantum number is applied to the total orbital angular momentum associated to an electron state. [4]