Search results
Results From The WOW.Com Content Network
An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning).An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation.
In addition to being seen as an autoencoder neural network architecture, variational autoencoders can also be studied within the mathematical formulation of variational Bayesian methods, connecting a neural encoder network to its decoder through a probabilistic latent space (for example, as a multivariate Gaussian distribution) that corresponds ...
Encoder–decoder frameworks are based on neural networks that map highly structured input to highly structured output. The approach arose in the context of machine translation , [ 93 ] [ 94 ] [ 95 ] where the input and output are written sentences in two natural languages.
Like earlier seq2seq models, the original transformer model used an encoder-decoder architecture. The encoder consists of encoding layers that process all the input tokens together one layer after another, while the decoder consists of decoding layers that iteratively process the encoder's output and the decoder's output tokens so far.
Google's Bidirectional Encoder Representations from Transformers (BERT) model is used to better understand the context of search queries. [15] OpenAI's GPT-3 is an autoregressive language model that can be used in language processing. It can be used to translate texts or answer questions, among other things. [16]
The reparameterization trick (aka "reparameterization gradient estimator") is a technique used in statistical machine learning, particularly in variational inference, variational autoencoders, and stochastic optimization.
Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.
That development led to the emergence of large language models such as BERT (2018) [28] which was a pre-trained transformer (PT) but not designed to be generative (BERT was an "encoder-only" model). Also in 2018, OpenAI published Improving Language Understanding by Generative Pre-Training, which introduced GPT-1, the first in its GPT series. [29]