Search results
Results From The WOW.Com Content Network
Visualization of a software buffer overflow. Data is written into A, but is too large to fit within A, so it overflows into B.. In programming and information security, a buffer overflow or buffer overrun is an anomaly whereby a program writes data to a buffer beyond the buffer's allocated memory, overwriting adjacent memory locations.
Canaries or canary words or stack cookies are known values that are placed between a buffer and control data on the stack to monitor buffer overflows. When the buffer overflows, the first data to be corrupted will usually be the canary, and a failed verification of the canary data will therefore alert of an overflow, which can then be handled, for example, by invalidating the corrupted data.
A stack buffer overflow can be caused deliberately as part of an attack known as stack smashing. If the affected program is running with special privileges, or accepts data from untrusted network hosts (e.g. a webserver ) then the bug is a potential security vulnerability .
A heap overflow, heap overrun, or heap smashing is a type of buffer overflow that occurs in the heap data area. Heap overflows are exploitable in a different manner to that of stack-based overflows. Memory on the heap is dynamically allocated at runtime and typically contains program data.
Generally, these types of attacks arise when an adversary manipulates the call stack by taking advantage of a bug in the program, often a buffer overrun. In a buffer overrun, a function that does not perform proper bounds checking before storing user-provided data into memory will accept more input data than it can store properly. If the data ...
Developments were mostly theoretical until the Morris worm, which exploited a buffer overflow in fingerd. [5] The field of computer security developed quickly thereafter, escalating with multitudes of new attacks such as the return-to-libc attack and defense techniques such as the non-executable stack [6] and address space layout randomization.
A "return-to-libc" attack is a computer security attack usually starting with a buffer overflow in which a subroutine return address on a call stack is replaced by an address of a subroutine that is already present in the process executable memory, bypassing the no-execute bit feature (if present) and ridding the attacker of the need to inject their own code.
A NOP-sled is the oldest and most widely known technique for exploiting stack buffer overflows. [2] It solves the problem of finding the exact address of the buffer by effectively increasing the size of the target area. To do this, much larger sections of the stack are corrupted with the no-op machine instruction.