Search results
Results From The WOW.Com Content Network
A gravitational field is used to explain gravitational phenomena, such as the gravitational force field exerted on another massive body. It has dimension of acceleration (L/T 2 ) and it is measured in units of newtons per kilogram (N/kg) or, equivalently, in meters per second squared (m/s 2 ).
The acceleration due to Earth's gravity at its surface is 976 to 983 Gal, the variation being due mainly to differences in latitude and elevation. Standard gravity is 980.665 Gal. Mountains and masses of lesser density within the Earth's crust typically cause variations in gravitational acceleration of tens to hundreds of milligals (mGal).
The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by ɡ 0 or ɡ n, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2).
The field has units of acceleration; in SI, this is m/s 2. Gravitational fields are also conservative ; that is, the work done by gravity from one position to another is path-independent. This has the consequence that there exists a gravitational potential field V ( r ) such that
Gravity is usually measured in units of acceleration.In the SI system of units, the standard unit of acceleration is metres per second squared (m/s 2).Other units include the cgs gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (g n), equal to 9.80665 m/s 2.
The concept of natural units was introduced in 1874, when George Johnstone Stoney, noting that electric charge is quantized, derived units of length, time, and mass, now named Stoney units in his honor. Stoney chose his units so that G, c, and the electron charge e would be numerically equal to 1. [4]
Acceleration has the dimensions of velocity (L/T) divided by time, i.e. L T −2. The SI unit of acceleration is the metre per second squared (m s −2); or "metre per second per second", as the velocity in metres per second changes by the acceleration value, every second.
universal gravitational constant: newton meter squared per kilogram squared (N⋅m 2 /kg 2) shear modulus: pascal (Pa) or newton per square meter (N/m 2) acceleration due to gravity: meters per second squared (m/s 2), or equivalently, newtons per kilogram (N/kg) magnetic field strength: ampere per meter (A/m)