Search results
Results From The WOW.Com Content Network
In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the most probable value of a measurement; indeed the expectation value may have zero probability of occurring (e.g. measurements which ...
The vacuum expectation value of an operator O is usually denoted by . One of the most widely used examples of an observable physical effect that results from the vacuum expectation value of an operator is the Casimir effect. This concept is important for working with correlation functions in quantum field theory. It is also important in ...
Quantum state tomography is a process by which, given a set of data representing the results of quantum measurements, a quantum state consistent with those measurement results is computed. [50] It is named by analogy with tomography , the reconstruction of three-dimensional images from slices taken through them, as in a CT scan .
A pure quantum state is a state that can not be written as a probabilistic mixture, or convex combination, of other quantum states. [5] There are several equivalent characterizations of pure states in the language of density operators. [9]: 73 A density operator represents a pure state if and only if:
The Ehrenfest theorem, named after Austrian theoretical physicist Paul Ehrenfest, relates the time derivative of the expectation values of the position and momentum operators x and p to the expectation value of the force = ′ on a massive particle moving in a scalar potential (), [1]
Re-arranging the equation leads to =, where the energy factor E is a scalar value, the energy the particle has and the value that is measured. The partial derivative is a linear operator so this expression is the operator for energy: E ^ = i ℏ ∂ ∂ t . {\displaystyle {\hat {E}}=i\hbar {\frac {\partial }{\partial t}}.}
In quantum field theory, correlation functions, often referred to as correlators or Green's functions, are vacuum expectation values of time-ordered products of field operators. They are a key object of study in quantum field theory where they can be used to calculate various observables such as S-matrix elements.
It is a hybrid algorithm that uses both classical computers and quantum computers to find the ground state of a given physical system. Given a guess or ansatz, the quantum processor calculates the expectation value of the system with respect to an observable, often the Hamiltonian, and a classical optimizer is used to