When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Statistical distance - Wikipedia

    en.wikipedia.org/wiki/Statistical_distance

    In statistics, probability theory, and information theory, a statistical distance quantifies the distance between two statistical objects, which can be two random variables, or two probability distributions or samples, or the distance can be between an individual sample point and a population or a wider sample of points.

  3. Total variation distance of probability measures - Wikipedia

    en.wikipedia.org/wiki/Total_variation_distance...

    In probability theory, the total variation distance is a distance measure for probability distributions. It is an example of a statistical distance metric, and is sometimes called the statistical distance , statistical difference or variational distance .

  4. Divergence (statistics) - Wikipedia

    en.wikipedia.org/wiki/Divergence_(statistics)

    In information geometry, a divergence is a kind of statistical distance: a binary function which establishes the separation from one probability distribution to another on a statistical manifold. The simplest divergence is squared Euclidean distance (SED), and divergences can be viewed as generalizations of SED.

  5. Integral probability metric - Wikipedia

    en.wikipedia.org/wiki/Integral_probability_metric

    In probability theory, integral probability metrics are types of distance functions between probability distributions, defined by how well a class of functions can distinguish the two distributions. Many important statistical distances are integral probability metrics, including the Wasserstein-1 distance and the total variation distance .

  6. Convergence of measures - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_measures

    The equivalence between these two definitions can be seen as a particular case of the Monge–Kantorovich duality. From the two definitions above, it is clear that the total variation distance between probability measures is always between 0 and 2. To illustrate the meaning of the total variation distance, consider the following thought experiment.

  7. Wasserstein metric - Wikipedia

    en.wikipedia.org/wiki/Wasserstein_metric

    In mathematics, the Wasserstein distance or Kantorovich–Rubinstein metric is a distance function defined between probability distributions on a given metric space. It is named after Leonid Vaseršteĭn .

  8. Bhattacharyya distance - Wikipedia

    en.wikipedia.org/wiki/Bhattacharyya_distance

    In statistics, the Bhattacharyya distance is a quantity which represents a notion of similarity between two probability distributions. [1] It is closely related to the Bhattacharyya coefficient , which is a measure of the amount of overlap between two statistical samples or populations.

  9. Hellinger distance - Wikipedia

    en.wikipedia.org/wiki/Hellinger_distance

    In probability and statistics, the Hellinger distance (closely related to, although different from, the Bhattacharyya distance) is used to quantify the similarity between two probability distributions. It is a type of f-divergence. The Hellinger distance is defined in terms of the Hellinger integral, which was introduced by Ernst Hellinger in 1909.