When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    A different trick may be used to prove = = + or in words, the sum of the squares of the first Fibonacci numbers up to is the product of the n-th and (n + 1)-th Fibonacci numbers. To see this, begin with a Fibonacci rectangle of size F n × F n + 1 {\displaystyle F_{n}\times F_{n+1}} and decompose it into squares of size F n , F n − 1 , . . .

  3. Fibonacci prime - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_prime

    A prime divides if and only if p is congruent to ±1 modulo 5, and p divides + if and only if it is congruent to ±2 modulo 5. (For p = 5, F 5 = 5 so 5 divides F 5) . Fibonacci numbers that have a prime index p do not share any common divisors greater than 1 with the preceding Fibonacci numbers, due to the identity: [6]

  4. Fibonacci - Wikipedia

    en.wikipedia.org/wiki/Fibonacci

    In the Fibonacci sequence, each number is the sum of the previous two numbers. Fibonacci omitted the "0" and first "1" included today and began the sequence with 1, 2, 3, ... . He carried the calculation up to the thirteenth place, the value 233, though another manuscript carries it to the next place, the value 377.

  5. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    A repfigit, or Keith number, is an integer such that, when its digits start a Fibonacci sequence with that number of digits, the original number is eventually reached. An example is 47, because the Fibonacci sequence starting with 4 and 7 (4, 7, 11, 18, 29, 47) reaches 47.

  6. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.

  7. Pisano period - Wikipedia

    en.wikipedia.org/wiki/Pisano_period

    For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4. The ratio of the Pisano period of n and the number of zeros modulo n in the cycle gives the rank of apparition or Fibonacci entry point of n .

  8. Liber Abaci - Wikipedia

    en.wikipedia.org/wiki/Liber_Abaci

    The list on the right shows the numbers 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 (the Fibonacci sequence). The 2, 8, and 9 resemble Arabic numerals more than Eastern Arabic numerals or Indian numerals .

  9. Zeckendorf's theorem - Wikipedia

    en.wikipedia.org/wiki/Zeckendorf's_theorem

    The first part of Zeckendorf's theorem (existence) can be proven by induction. For n = 1, 2, 3 it is clearly true (as these are Fibonacci numbers), for n = 4 we have 4 = 3 + 1. If n is a Fibonacci number then there is nothing to prove. Otherwise there exists j such that F j < n < F j + 1 .