Ad
related to: cochlear hair cells damage picture of mouth disease
Search results
Results From The WOW.Com Content Network
Mammalian cochlear hair cells are of two anatomically and functionally distinct types, known as outer, and inner hair cells. Damage to these hair cells results in decreased hearing sensitivity, and because the inner ear hair cells cannot regenerate, this damage is permanent. [4] Damage to hair cells can cause damage to the vestibular system and ...
They are thought to damage the hair cells of the cochlea. Long-term exposure to these drugs may cause damage that progresses to the upper turn of the cochlea, impairing hearing or even causing deafness. [6] Glycopeptides, on the other hand, are rarely associated with ototoxicity.
The drug is understood to damage multiple regions of the cochlea, causing the death of outer hair cells, as well as damage to the spiral ganglion neurons and cells of the stria vascularis. [27] Long-term retention of cisplatin in the cochlea may contribute to the drug's cochleotoxic potential. [28]
Hearing loss associated with the cochlea is often a result of outer hair cells and inner hair cells damage or death. Outer hair cells are more susceptible to damage, which can result in less sensitivity to weak sounds. Frequency sensitivity is also affected by cochlear damage which can impair the patient's ability to distinguish between ...
Auditory neuropathy (AN) is a hearing disorder in which the outer hair cells of the cochlea are present and functional, but sound information is not transmitted sufficiently by the auditory nerve to the brain. The cause may be several dysfunctions of the inner hair cells of the cochlea or spiral ganglion neuron levels. [1]
Thus, an increase in firing rate of the auditory neurons connected to the hair cell occurs. On the other hand, the bending of the stereocilia away from the basal body of the OHC causes inhibition of the hair cell. Thus, a decrease in firing rate of the auditory neurons connected to the hair cell occurs.
Structural damage to hair cells (primarily the outer hair cells) will result in hearing loss that can be characterized by an attenuation and distortion of incoming auditory stimuli. During hair cell death 'scars' develop, which prevent potassium rich fluid of the endolymph from mixing with the fluid on the basal domain. [ 86 ]
Hearing loss is most commonly caused by long-term exposure to loud noises, from recreation or from work, that damage the hair cells, which do not grow back on their own. [ 84 ] [ 85 ] [ 9 ] Older people may lose their hearing from long exposure to noise, changes in the inner ear, changes in the middle ear, or from changes along the nerves from ...