When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    In physics and engineering, the time constant, usually denoted by the Greek letter τ (tau), is the parameter characterizing the response to a step input of a first-order, linear time-invariant (LTI) system. [1] [note 1] The time constant is the main characteristic unit of a first-order LTI system. It gives speed of the response.

  3. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    The RC time constant, denoted τ (lowercase tau), the time constant (in seconds) of a resistor–capacitor circuit (RC circuit), is equal to the product of the circuit resistance (in ohms) and the circuit capacitance (in farads):

  4. Carrier lifetime - Wikipedia

    en.wikipedia.org/wiki/Carrier_Lifetime

    In semiconductor lasers, the carrier lifetime is the time it takes an electron before recombining via non-radiative processes in the laser cavity. In the frame of the rate equations model, carrier lifetime is used in the charge conservation equation as the time constant of the exponential decay of carriers.

  5. Membrane potential - Wikipedia

    en.wikipedia.org/wiki/Membrane_potential

    Starting from any initial state, the current flowing across either the conductance or the capacitance decays with an exponential time course, with a time constant of τ = RC, where C is the capacitance of the membrane patch, and R = 1/g net is the net resistance. For realistic situations, the time constant usually lies in the 1—100 ...

  6. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    D is the diffusion constant of the solute unit m 2 ⋅s −1, t is time unit s, c 2, c 1 concentration should use unit mol m −3, so flux unit becomes mol s −1. The flux is decay over the square root of time because a concentration gradient builds up near the membrane over time under ideal conditions.

  7. Electrotonic potential - Wikipedia

    en.wikipedia.org/wiki/Electrotonic_potential

    In order to quantify the behavior of electrotonic potentials there are two constants that are commonly used: the membrane time constant τ, and the membrane length constant λ. The membrane time constant measures the amount of time for an electrotonic potential to passively fall to 1/e or 37% of its maximum. A typical value for neurons can be ...

  8. Rheobase - Wikipedia

    en.wikipedia.org/wiki/Rheobase

    However, demyelination, which exposes internodal membrane with a higher membrane time constant than that of the original node, can also increase strength-duration time constant. [13] The strength-duration time constant of both cutaneous and motor afferents decreases with age, and this corresponds to an increase in rheobase. [7] Two possible ...

  9. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    the equation indicates that the decay constant λ has units of t −1, and can thus also be represented as 1/ τ, where τ is a characteristic time of the process called the time constant. In a radioactive decay process, this time constant is also the mean lifetime for decaying atoms.