Search results
Results From The WOW.Com Content Network
Nicotinamide adenine dinucleotide phosphate, abbreviated NADP [1] [2] or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as the Calvin cycle and lipid and nucleic acid syntheses, which require NADPH as a reducing agent ('hydrogen source'). NADPH is the reduced form, whereas NADP + is the ...
The main function of PSII is to efficiently split water into oxygen molecules and protons. PSII will provide a steady stream of electrons to PSI, which will boost these in energy and transfer them to NADP + and H + to make NADPH. The hydrogen from this NADPH can then be used in a number of different processes within the plant. [2]
Flavin mononucleotide (FMN), or riboflavin-5′-phosphate, is a biomolecule produced from riboflavin (vitamin B 2) by the enzyme riboflavin kinase and functions as the prosthetic group of various oxidoreductases, including NADH dehydrogenase, as well as a cofactor in biological blue-light photo receptors. [1]
NADP is a reducing agent in anabolic reactions like the Calvin cycle and lipid and nucleic acid syntheses. NADP exists in two forms: NADP+, the oxidized form, and NADPH, the reduced form. NADP is similar to nicotinamide adenine dinucleotide (NAD), but NADP has a phosphate group at the C-2′ position of the adenosyl
The control of enzyme activity due to pH changes align with the hypothesis that NADP-ME is most active while photosynthesis is in progress: Active light reactions leads to a rise in basicity within the chloroplast stroma, the location of NADP-ME, leading to a diminished inhibitory effect of malate on NADP-ME and thereby promoting a more active ...
The electron transport chain of photosynthesis is often put in a diagram called the Z-scheme, because the redox diagram from P680 to P700 resembles the letter Z. [3] The final product of PSII is plastoquinol, a mobile electron carrier in the membrane. Plastoquinol transfers the electron from PSII to the proton pump, cytochrome b6f. The ultimate ...
In enzymology, a malate dehydrogenase (NADP +) (EC 1.1.1.82) is an enzyme that catalyzes the chemical reaction (S)-malate + NADP + ⇌ {\displaystyle \rightleftharpoons } oxaloacetate + NADPH + H + Thus, the two substrates of this enzyme are (S)-malate and NADP + , whereas its 3 products are oxaloacetate , NADPH , and H + .
The chemical pathway of oxygenic photosynthesis fixes carbon in two stages: the light-dependent reactions and the light-independent reactions. The light-dependent reactions capture light energy to transfer electrons from water and convert NADP +, ADP, and inorganic phosphate into the energy-storage molecules NADPH and ATP.