Search results
Results From The WOW.Com Content Network
A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.
The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a geometric sequence. [1] An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications ...
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
This is also known as the nth-term test, ... each element of the two sequences is positive) ... is a geometric series with ratio ...
The n th term describes the length of the n th run ... At each stage an alternating sequence of 1s and 0s is inserted between the terms of the previous sequence.
The maximum number of pieces, p obtainable with n straight cuts is the n-th triangular number plus one, forming the lazy caterer's sequence (OEIS A000124) One way of calculating the depreciation of an asset is the sum-of-years' digits method, which involves finding T n, where n is the length in years of the asset's useful life.
A pyramid with side length 5 contains 35 spheres. Each layer represents one of the first five triangular numbers. A tetrahedral number, or triangular pyramidal number, is a figurate number that represents a pyramid with a triangular base and three sides, called a tetrahedron.
More formally, one describes it in terms of functions on closed sets of points. If we let d A denote the dilation by a factor of 1 / 2 about a point A, then the Sierpiński triangle with corners A, B, and C is the fixed set of the transformation d A ∪ d B ∪ d C {\displaystyle d_{\mathrm {A} }\cup d_{\mathrm {B} }\cup d_{\mathrm ...