Search results
Results From The WOW.Com Content Network
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
For a long transmission line, it is considered that the line may be divided into various sections, and each section consists of inductance, capacitance, resistance and conductance, as shown in the RLC (resistance and inductance in series, with shunt capacitance) cascade model.
Fig.1 Transmission line. The distributed-element model applied to a transmission line. In electrical engineering, the distributed-element model or transmission-line model of electrical circuits assumes that the attributes of the circuit (resistance, capacitance, and inductance) are distributed continuously throughout the material of the circuit.
Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...
An LCR meter is a type of electronic test equipment used to measure the inductance (L), capacitance (C), and resistance (R) of an electronic component. [1] In the simpler versions of this instrument the impedance was measured internally and converted for display to the corresponding capacitance or inductance value. Readings should be reasonably ...
Illustration of the Ferranti effect; addition of voltages across the line inductance. In electrical engineering, the Ferranti effect is the increase in voltage occurring at the receiving end of a very long (> 200 km) AC electric power transmission line, relative to the voltage at the sending end, when the load is very small, or no load is connected.
Without loading coils, the line response is dominated by the resistance and capacitance of the line with the attenuation gently increasing with frequency. With loading coils of exactly the right inductance, neither capacitance nor inductance dominate: the response is flat, waveforms are undistorted and the characteristic impedance is resistive ...
A minimum acceptable resistance value is usually specified (typically in the mega ohm (MΩ) range per circuit tested). Multiple circuits having a common return may be tested simultaneously, provided the minimum allowable resistance value is based on the number of circuits in parallel. Five basic isolation test configurations exist: [3]