Search results
Results From The WOW.Com Content Network
The speed of this flow has multiple meanings. In everyday electrical and electronic devices, the signals travel as electromagnetic waves typically at 50%–99% of the speed of light in vacuum. The electrons themselves move much more slowly. See drift velocity and electron mobility.
The second is, in turn, defined to be the length of time occupied by 9 192 631 770 cycles of the radiation emitted by a caesium-133 atom in a transition between two specified energy states. [13] By using the value of c, as well as an accurate measurement of the second, one can establish a standard for the metre. [14]
The Avogadro constant, commonly denoted N A [1] or L, [2] is an SI defining constant with an exact value of 6.022 140 76 × 10 23 mol −1 (reciprocal moles). [3] [4] It defines the number of constituent particles in one mole, where the particles in question can be either molecules, atoms, ions, ion pairs, or any other elementary entities.
For two indistinguishable particles, a state before the particle exchange must be physically equivalent to the state after the exchange, so these two states differ at most by a complex phase factor. This fact suggests that a state for two indistinguishable (and non-interacting) particles is given by following two possibilities: [2] [3] [4]
For example, 90% would be described as "one nine"; 99% as "two nines"; 99.9% as "three nines"; and so forth. However, there are different conventions for representing inexact multiples of 9. For example, a percentage of 99.5% could be expressed as "two nines five" (2N5, or N2.5) [ 2 ] or as 2.3 nines, [ citation needed ] following from the ...
The solar constant is the amount of power that the Sun deposits per unit area that is directly exposed to sunlight. The solar constant is equal to approximately 1,368 W/m 2 (watts per square meter) at a distance of one astronomical unit (AU) from the Sun (that is, at or near Earth's orbit). [99]
Nuclear cross sections are used in determining the nuclear reaction rate, and are governed by the reaction rate equation for a particular set of particles (usually viewed as a "beam and target" thought experiment where one particle or nucleus is the "target", which is typically at rest, and the other is treated as a "beam", which is a projectile with a given energy).
One application of the process is a trading strategy known as pairs trade. [17] [18] [19] A further implementation of the Ornstein–Uhlenbeck process is derived by Marcello Minenna in order to model the stock return under a lognormal distribution dynamics. This modeling aims at the determination of confidence interval to predict market abuse ...