When.com Web Search

  1. Ads

    related to: ellipse sample problem examples list of questions pdf free

Search results

  1. Results From The WOW.Com Content Network
  2. Exact solutions of classical central-force problems - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_of...

    In the classical central-force problem of classical mechanics, some potential energy functions () produce motions or orbits that can be expressed in terms of well-known functions, such as the trigonometric functions and elliptic functions. This article describes these functions and the corresponding solutions for the orbits.

  3. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  4. Illumination problem - Wikipedia

    en.wikipedia.org/wiki/Illumination_problem

    Alternatively, the question can be stated as asking that if a billiard table can be constructed in any required shape, is there a shape possible such that there is a point where it is impossible to hit the billiard ball at another point, assuming the ball is point-like and continues infinitely rather than stopping due to friction.

  5. Perimeter of an ellipse - Wikipedia

    en.wikipedia.org/wiki/Perimeter_of_an_ellipse

    An ellipse has two axes and two foci Unlike most other elementary shapes, such as the circle and square , there is no algebraic equation to determine the perimeter of an ellipse . Throughout history, a large number of equations for approximations and estimates have been made for the perimeter of an ellipse.

  6. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    For example, on a triaxial ellipsoid, the meridional eccentricity is that of the ellipse formed by a section containing both the longest and the shortest axes (one of which will be the polar axis), and the equatorial eccentricity is the eccentricity of the ellipse formed by a section through the centre, perpendicular to the polar axis (i.e. in ...

  7. Geodesics on an ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid

    the inverse geodesic problem or second geodesic problem, given A and B, determine s 12, α 1, and α 2. As can be seen from Fig. 1, these problems involve solving the triangle NAB given one angle, α 1 for the direct problem and λ 12 = λ 2 − λ 1 for the inverse problem, and its two adjacent sides.

  8. Circle–ellipse problem - Wikipedia

    en.wikipedia.org/wiki/Circle–ellipse_problem

    The circle and ellipse models are deliberately simplified to avoid distracting details which are not relevant to the circle–ellipse problem. An ellipse has two semi-axes called h-axis and v-axis in the code. Being an ellipse, a circle inherits these, and also has a radius property, which value is equal to that of the axes (which must, of ...

  9. Finding Ellipses - Wikipedia

    en.wikipedia.org/wiki/Finding_Ellipses

    Finding Ellipses: What Blaschke Products, Poncelet’s Theorem, and the Numerical Range Know about Each Other is a mathematics book on "some surprising connections among complex analysis, geometry, and linear algebra", [1] and on the connected ways that ellipses can arise from other subjects of study in all three of these fields. [2]