When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.

  3. Three-term recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Three-term_recurrence_relation

    If the {} and {} are constant and independent of the step index n, then the TTRR is a Linear recurrence with constant coefficients of order 2. Arguably the simplest, and most prominent, example for this case is the Fibonacci sequence , which has constant coefficients a n = b n = 1 {\displaystyle a_{n}=b_{n}=1} .

  4. Linear differential equation - Wikipedia

    en.wikipedia.org/wiki/Linear_differential_equation

    A linear differential equation or a system of linear equations such that the associated homogeneous equations have constant coefficients may be solved by quadrature, which means that the solutions may be expressed in terms of integrals. This is also true for a linear equation of order one, with non-constant coefficients.

  5. Homogeneous differential equation - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_differential...

    A linear differential equation is homogeneous if it is a homogeneous linear equation in the unknown function and its derivatives. It follows that, if φ(x) is a solution, so is cφ(x), for any (non-zero) constant c. In order for this condition to hold, each nonzero term of the linear differential equation must depend on the unknown function or ...

  6. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on . For these recurrences, one can express the general term of the sequence as a closed-form expression of n {\displaystyle n} .

  7. Cauchy–Euler equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Euler_equation

    In mathematics, an Euler–Cauchy equation, or Cauchy–Euler equation, or simply Euler's equation, is a linear homogeneous ordinary differential equation with variable coefficients. It is sometimes referred to as an equidimensional equation. Because of its particularly simple equidimensional structure, the differential equation can be solved ...

  8. Characteristic equation (calculus) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_equation...

    [3] [4] The characteristic equation can only be formed when the differential or difference equation is linear and homogeneous, and has constant coefficients. [1] Such a differential equation, with y as the dependent variable, superscript (n) denoting n th-derivative, and a n, a n − 1, ..., a 1, a 0 as constants,

  9. Constant-recursive sequence - Wikipedia

    en.wikipedia.org/wiki/Constant-recursive_sequence

    The equation is called a linear recurrence with constant coefficients of order d. The order of the sequence is the smallest positive integer d {\displaystyle d} such that the sequence satisfies a recurrence of order d , or d = 0 {\displaystyle d=0} for the everywhere-zero sequence.