Ads
related to: spindle speed formula for milling tool
Search results
Results From The WOW.Com Content Network
Cutting speed may be defined as the rate at the workpiece surface, irrespective of the machining operation used. A cutting speed for mild steel of 100 ft/min is the same whether it is the speed of the cutter passing over the workpiece, such as in a turning operation, or the speed of the cutter moving past a workpiece, such as in a milling operation.
SFM is a combination of diameter and the velocity of the material measured in feet-per-minute as the spindle of a milling machine or lathe. 1 SFM equals 0.00508 surface meter per second (meter per second, or m/s, is the SI unit of speed). The faster the spindle turns, and/or the larger the diameter, the higher the SFM.
Typical values for cutting speed are 10m/min to 60m/min for some steels, and 100m/min and 600m/min for aluminum. This should not be confused with the feed rate. This value is also known as "tangential velocity." Spindle speed (S) This is the rotation speed of the tool, and is measured in revolutions per minute (rpm).
There are cutting tools typically used in milling machines or machining centers to perform milling operations (and occasionally in other machine tools). They remove material by their movement within the machine (e.g., a ball nose mill) or directly from the cutter's shape (e.g., a form tool such as a hobbing cutter).
A machine tool may have several spindles, such as the headstock and tailstock spindles on a bench lathe. The main spindle is usually the biggest one. References to "the spindle" without further qualification imply the main spindle. Some machine tools that specialize in high-volume mass production have a group of 4, 6, or even more main spindles.
The controller is then responsible for driving and monitoring the various positioning components which move the milling head and gantry and control the spindle speed. Spindle speeds can range from 30,000 RPM to 100,000 RPM depending on the milling system, with higher spindle speeds equating to better accuracy, in a nutshell the smaller the tool ...