When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Green's function for the three-variable Laplace equation

    en.wikipedia.org/wiki/Green's_function_for_the...

    In the case of a boundary put at infinity with the boundary condition setting the solution to zero at infinity, then one has an infinite-extent Green's function. For the three-variable Laplace operator, one can for instance expand it in the rotationally invariant coordinate systems which allow separation of variables.

  3. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    In mathematics, the Laplace transform, named after Pierre-Simon Laplace (/ l ə ˈ p l ɑː s /), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex-valued frequency domain, also known as s-domain, or s-plane).

  4. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The following is a list of Laplace transforms for many common functions of a single variable. [1] The Laplace transform is an integral transform that takes a function of a positive real variable t (often time) to a function of a complex variable s (complex angular frequency ).

  5. Laplace transform applied to differential equations - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform_applied...

    In mathematics, the Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions. First consider the following property of the Laplace transform:

  6. Integral transform - Wikipedia

    en.wikipedia.org/wiki/Integral_transform

    As an example of an application of integral transforms, consider the Laplace transform. This is a technique that maps differential or integro-differential equations in the "time" domain into polynomial equations in what is termed the "complex frequency" domain. (Complex frequency is similar to actual, physical frequency but rather more general.

  7. Telegrapher's equations - Wikipedia

    en.wikipedia.org/wiki/Telegrapher's_equations

    3.2 Loss-free case, general solution. ... Download as PDF; ... The frequency domain variables can be taken as the Laplace transform or Fourier transform of the time ...

  8. Spectral method - Wikipedia

    en.wikipedia.org/wiki/Spectral_method

    Compute the Fourier transform (b j,k) of g.Compute the Fourier transform (a j,k) of f via the formula ().Compute f by taking an inverse Fourier transform of (a j,k).; Since we're only interested in a finite window of frequencies (of size n, say) this can be done using a fast Fourier transform algorithm.

  9. Classical control theory - Wikipedia

    en.wikipedia.org/wiki/Classical_control_theory

    The Laplace transform is a frequency-domain approach for continuous time signals irrespective of whether the system is stable or unstable. The Laplace transform of a function f ( t ) , defined for all real numbers t ≥ 0 , is the function F ( s ) , which is a unilateral transform defined by