When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Posterior probability - Wikipedia

    en.wikipedia.org/wiki/Posterior_probability

    In the context of Bayesian statistics, the posterior probability distribution usually describes the epistemic uncertainty about statistical parameters conditional on a collection of observed data. From a given posterior distribution, various point and interval estimates can be derived, such as the maximum a posteriori (MAP) or the highest ...

  3. Posterior predictive distribution - Wikipedia

    en.wikipedia.org/wiki/Posterior_predictive...

    In Bayesian statistics, the posterior predictive distribution is the distribution of possible unobserved values conditional on the observed values. [1] [2]Given a set of N i.i.d. observations = {, …,}, a new value ~ will be drawn from a distribution that depends on a parameter , where is the parameter space.

  4. Maximum a posteriori estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_a_posteriori...

    An estimation procedure that is often claimed to be part of Bayesian statistics is the maximum a posteriori (MAP) estimate of an unknown quantity, that equals the mode of the posterior density with respect to some reference measure, typically the Lebesgue measure.

  5. Bayes estimator - Wikipedia

    en.wikipedia.org/wiki/Bayes_estimator

    A conjugate prior is defined as a prior distribution belonging to some parametric family, for which the resulting posterior distribution also belongs to the same family. This is an important property, since the Bayes estimator, as well as its statistical properties (variance, confidence interval, etc.), can all be derived from the posterior ...

  6. Conjugate prior - Wikipedia

    en.wikipedia.org/wiki/Conjugate_prior

    In Bayesian probability theory, if, given a likelihood function (), the posterior distribution is in the same probability distribution family as the prior probability distribution (), the prior and posterior are then called conjugate distributions with respect to that likelihood function and the prior is called a conjugate prior for the likelihood function ().

  7. Student's t-distribution - Wikipedia

    en.wikipedia.org/wiki/Student's_t-distribution

    In statistics, the t distribution was first derived as a posterior distribution in 1876 by Helmert [19] [20] [21] and Lüroth. [22] [23] [24] As such, Student's t-distribution is an example of Stigler's Law of Eponymy. The t distribution also appeared in a more general form as Pearson type IV distribution in Karl Pearson's 1895 paper. [25]

  8. Bayesian probability - Wikipedia

    en.wikipedia.org/wiki/Bayesian_probability

    The need to determine the prior probability distribution taking into account the available (prior) information. The sequential use of Bayes' theorem: as more data become available, calculate the posterior distribution using Bayes' theorem; subsequently, the posterior distribution becomes the next prior.

  9. Normalizing constant - Wikipedia

    en.wikipedia.org/wiki/Normalizing_constant

    Bayes' theorem says that the posterior probability measure is proportional to the product of the prior probability measure and the likelihood function. Proportional to implies that one must multiply or divide by a normalizing constant to assign measure 1 to the whole space, i.e., to get a probability measure.