When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Variational autoencoder - Wikipedia

    en.wikipedia.org/wiki/Variational_autoencoder

    These q-distributions are normally parameterized for each individual data point in a separate optimization process. However, variational autoencoders use a neural network as an amortized approach to jointly optimize across data points. In that way, the same parameters are reused for multiple data points, which can result in massive memory savings.

  3. Reparameterization trick - Wikipedia

    en.wikipedia.org/wiki/Reparameterization_trick

    The reparameterization trick (aka "reparameterization gradient estimator") is a technique used in statistical machine learning, particularly in variational inference, variational autoencoders, and stochastic optimization.

  4. Autoencoder - Wikipedia

    en.wikipedia.org/wiki/Autoencoder

    An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning).An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation.

  5. Vision transformer - Wikipedia

    en.wikipedia.org/wiki/Vision_transformer

    Other examples include the visual transformer, [34] CoAtNet, [35] CvT, [36] the data-efficient ViT (DeiT), [37] etc. In the Transformer in Transformer architecture, each layer applies a vision Transformer layer on each image patch embedding, add back the resulting tokens to the embedding, then applies another vision Transformer layer.

  6. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  7. Latent diffusion model - Wikipedia

    en.wikipedia.org/wiki/Latent_Diffusion_Model

    To compress the image data, a variational autoencoder (VAE) is first trained on a dataset of images. The encoder part of the VAE takes an image as input and outputs a lower-dimensional latent representation of the image. This latent representation is then used as input to the U-Net.

  8. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    It is notable for its dramatic improvement over previous state-of-the-art models, and as an early example of a large language model. As of 2020, BERT is a ubiquitous baseline in natural language processing (NLP) experiments. [3] BERT is trained by masked token prediction and next sentence prediction.

  9. Variational Bayesian methods - Wikipedia

    en.wikipedia.org/wiki/Variational_Bayesian_methods

    Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning.They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as ...