Search results
Results From The WOW.Com Content Network
This method of functionalizing methane preceded the 1998 discovery by the same group of the so-called Catalytica system, the most active cycle to date in terms of turnover rate, yields, and selectivity. [6] Performing the reaction in sulfuric acid at 220 °C means that the catalyst must be able to withstand these harsh conditions.
Paul Sabatier (1854-1941) winner of the Nobel Prize in Chemistry in 1912 and discoverer of the reaction in 1897. The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures (optimally 300–400 °C) and pressures (perhaps 3 MPa [1]) in the presence of a nickel catalyst.
Zeolite structure. A common catalyst support material in hydrocracking. Also acts as a catalyst in hydrocarbon alkylation and isomerization. Catalysts are not active towards reactants across their entire surface; only specific locations possess catalytic activity, called active sites. The surface area of a solid catalyst has a strong influence ...
Average levels in 2016 reached 403.3 parts per million, up from 400 parts per million in 2015. The amount of CO2 in the atmosphere reached a record high in 2016, according to the World ...
Methane (US: / ˈ m ɛ θ eɪ n / METH-ayn, UK: / ˈ m iː θ eɪ n / MEE-thayn) is a chemical compound with the chemical formula CH 4 (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas.
Common Lewis acid catalysts are based on main group metals such as aluminum, boron, silicon, and tin, as well as many early (titanium, zirconium) and late (iron, copper, zinc) d-block metals. The metal atom forms an adduct with a lone-pair bearing electronegative atom in the substrate, such as oxygen (both sp 2 or sp 3), nitrogen, sulfur, and ...
The oxidative coupling of methane (OCM) is a potential chemical reaction studied in the 1980s for the direct conversion of natural gas, primarily consisting of methane, into value-added chemicals. Although the reaction would have strong economics if practicable, no effective catalysts are known, and thermodynamic arguments suggest none can exist.
An illustrative example is the effect of catalysts to speed the decomposition of hydrogen peroxide into water and oxygen: . 2 H 2 O 2 → 2 H 2 O + O 2. This reaction proceeds because the reaction products are more stable than the starting compound, but this decomposition is so slow that hydrogen peroxide solutions are commercially available.