When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    So there is a unique solution to the original system of equations. Instead of stopping once the matrix is in echelon form, one could continue until the matrix is in reduced row echelon form, as it is done in the table. The process of row reducing until the matrix is reduced is sometimes referred to as GaussJordan elimination, to distinguish ...

  3. Jordan matrix - Wikipedia

    en.wikipedia.org/wiki/Jordan_matrix

    Let () (that is, a n × n complex matrix) and () be the change of basis matrix to the Jordan normal form of A; that is, A = C −1 JC.Now let f (z) be a holomorphic function on an open set such that ; that is, the spectrum of the matrix is contained inside the domain of holomorphy of f.

  4. Symbolab - Wikipedia

    en.wikipedia.org/wiki/Symbolab

    Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]

  5. Frontal solver - Wikipedia

    en.wikipedia.org/wiki/Frontal_solver

    A frontal solver is an approach to solving sparse linear systems which is used extensively in finite element analysis. [1] Algorithms of this kind are variants of Gauss elimination that automatically avoids a large number of operations involving zero terms due to the fact that the matrix is only sparse. [2]

  6. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    Example of a matrix in Jordan normal form. All matrix entries not shown are zero. The outlined squares are known as "Jordan blocks". Each Jordan block contains one number λ i on its main diagonal, and 1s directly above the main diagonal. The λ i s are the eigenvalues of the matrix; they need not be distinct.

  7. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    A system of linear equations is said to be in row echelon form if its augmented matrix is in row echelon form. Similarly, a system of linear equations is said to be in reduced row echelon form or in canonical form if its augmented matrix is in reduced row echelon form. The canonical form may be viewed as an explicit solution of the linear system.

  8. Elementary matrix - Wikipedia

    en.wikipedia.org/wiki/Elementary_matrix

    The next type of row operation on a matrix A multiplies all elements on row i by m where m is a non-zero scalar (usually a real number). The corresponding elementary matrix is a diagonal matrix, with diagonal entries 1 everywhere except in the i th position, where it is m.

  9. Augmented matrix - Wikipedia

    en.wikipedia.org/wiki/Augmented_matrix

    Consider the system of equations + + = + + = + + = The coefficient matrix is = [], and the augmented matrix is (|) = []. Since both of these have the same rank, namely 2, there exists at least one solution; and since their rank is less than the number of unknowns, the latter being 3, there are an infinite number of solutions.