Search results
Results From The WOW.Com Content Network
Virtual work is the total work done by the applied forces and the inertial forces of a mechanical system as it moves through a set of virtual displacements. When considering forces applied to a body in static equilibrium, the principle of least action requires the virtual work of these forces to be zero.
D'Alembert's principle generalizes the principle of virtual work from static to dynamical systems by introducing forces of inertia which, when added to the applied forces in a system, result in dynamic equilibrium. [1] [2] D'Alembert's principle can be applied in cases of kinematic constraints that depend on velocities.
The static equilibrium of a mechanical system rigid bodies is defined by the condition that the virtual work of the applied forces is zero for any virtual displacement of the system. This is known as the principle of virtual work. [5] This is equivalent to the requirement that the generalized forces for any virtual displacement are zero, that ...
The principle asserts for N particles the virtual work, i.e. the work along a virtual displacement, δr k, is zero: [9] = (+) = The virtual displacements , δ r k , are by definition infinitesimal changes in the configuration of the system consistent with the constraint forces acting on the system at an instant of time , [ 22 ] i.e. in such a ...
In analytical mechanics (particularly Lagrangian mechanics), generalized forces are conjugate to generalized coordinates. They are obtained from the applied forces Fi, i = 1, …, n, acting on a system that has its configuration defined in terms of generalized coordinates. In the formulation of virtual work, each generalized force is the ...
Work–life balance. In the intersection of work and personal life, the work–life balance is the equilibrium between the two. There are many aspects of one's personal life that can intersect with work, including family, leisure, and health. A work–life balance is bidirectional; for instance, work can interfere with private life, and private ...
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.
A measure of disorder in the universe or of the unavailability of the energy in a system to do work. [7] Entropy and disorder also have associations with equilibrium. [8] Technically, entropy, from this perspective, is defined as a thermodynamic property which serves as a measure of how close a system is to equilibrium—that is, to perfect ...