Search results
Results From The WOW.Com Content Network
Near the critical point, small changes in pressure or temperature result in large changes in density, allowing many properties of a supercritical fluid to be "fine-tuned". Supercritical fluids occur in the atmospheres of the gas giants Jupiter and Saturn, the terrestrial planet Venus, and probably in those of the ice giants Uranus and Neptune.
Critical carbon dioxide exuding fog while cooling from supercritical to critical temperature. The existence of a critical point was first discovered by Charles Cagniard de la Tour in 1822 [10] [11] and named by Dmitri Mendeleev in 1860 [12] [13] and Thomas Andrews in 1869. [14]
A transcritical cycle is a closed thermodynamic cycle where the working fluid goes through both subcritical and supercritical states. In particular, for power cycles the working fluid is kept in the liquid region during the compression phase and in vapour and/or supercritical conditions during the expansion phase.
More specifically, it behaves as a supercritical fluid above its critical temperature (304.128 K, 30.9780 °C, 87.7604 °F) [1] and critical pressure (7.3773 MPa, 72.808 atm, 1,070.0 psi, 73.773 bar), [1] expanding to fill its container like a gas but with a density like that of a liquid. Supercritical CO
The supercritical solvent is passed into a vessel at lower pressure than the extraction vessel. The density, and hence dissolving power, of supercritical fluids varies sharply with pressure, and hence the solubility in the lower density CO 2 is much lower, and the material precipitates for collection. It is possible to fractionate the dissolved ...
A supercritical flow is a flow whose velocity is larger than the wave velocity. [clarification needed] The analogous condition in gas dynamics is supersonic speed.According to the website Civil Engineering Terms, supercritical flow is defined as follows: The flow at which depth of the channel is less than critical depth, velocity of flow is greater than critical velocity and slope of the ...
The SCWR operates at supercritical pressure. The reactor outlet coolant is supercritical water.Light water is used as a neutron moderator and coolant. Above the critical point, steam and liquid become the same density and are indistinguishable, eliminating the need for pressurizers and steam generators (), or jet/recirculation pumps, steam separators and dryers ().
The critical point is 21.7 MPa at a temperature of 374 °C, above which water is supercritical rather than superheated. Above about 300 °C, water starts to behave as a near-critical liquid, and physical properties such as density start to change more significantly with pressure.