Ad
related to: primitive polynomial codes list excel formula guide example word
Search results
Results From The WOW.Com Content Network
Over GF(2), x + 1 is a primitive polynomial and all other primitive polynomials have an odd number of terms, since any polynomial mod 2 with an even number of terms is divisible by x + 1 (it has 1 as a root). An irreducible polynomial F(x) of degree m over GF(p), where p is prime, is a primitive polynomial if the smallest positive integer n ...
This, as every polynomial code, is indeed a linear code, i.e., linear combinations of code words are again code words. In a case like this where the field is GF(2), linear combinations are found by taking the XOR of the codewords expressed in binary form (e.g. 00111 XOR 10010 = 10101).
The generator polynomial of the BCH code is defined as the least common multiple g(x) = lcm(m 1 (x),…,m d − 1 (x)). It can be seen that g(x) is a polynomial with coefficients in GF(q) and divides x n − 1. Therefore, the polynomial code defined by g(x) is a cyclic code.
This capacity assumes that the generator polynomial is the product of + and a primitive polynomial of degree since all primitive polynomials except + have an odd number of non-zero coefficients. All burst errors of length n {\displaystyle n} will be detected by any polynomial of degree n {\displaystyle n} or greater which has a non-zero x 0 ...
In the following examples it is best not to use the polynomial representation, as the meaning of x changes between the examples. The monic irreducible polynomial x 8 + x 4 + x 3 + x + 1 over GF(2) is not primitive. Let λ be a root of this polynomial (in the polynomial representation this would be x), that is, λ 8 + λ 4 + λ 3 + λ + 1 = 0.
Now, we can think of words as polynomials over , where the individual symbols of a word correspond to the different coefficients of the polynomial. To define a cyclic code, we pick a fixed polynomial, called generator polynomial. The codewords of this cyclic code are all the polynomials that are divisible by this generator polynomial. Codewords ...
Coefficient: An expression multiplying one of the monomials of the polynomial. Root (or zero) of a polynomial: Given a polynomial p(x), the x values that satisfy p(x) = 0 are called roots (or zeroes) of the polynomial p. Graphing. End behaviour – Concavity – Orientation – Tangency point – Inflection point – Point where concavity changes.
The Conway polynomial C p,n is defined as the lexicographically minimal monic primitive polynomial of degree n over F p that is compatible with C p,m for all m dividing n.This is an inductive definition on n: the base case is C p,1 (x) = x − α where α is the lexicographically minimal primitive element of F p.