When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    The net force on the object is zero, and the result is that the velocity of the object remains constant. Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example). It is reached when the sum of the drag force (F d) and the buoyancy is equal to the downward force of gravity (F G ...

  3. Zero-velocity surface - Wikipedia

    en.wikipedia.org/wiki/Zero-velocity_surface

    Jacobi constant, a Zero Velocity Surface and Curve (also Hill's curve) [1] A zero-velocity surface is a concept that relates to the N-body problem of gravity. It represents a surface a body of given energy cannot cross, since it would have zero velocity on the surface. It was first introduced by George William Hill. [2]

  4. Free fall - Wikipedia

    en.wikipedia.org/wiki/Free_fall

    Near the surface of the Earth, an object in free fall in a vacuum will accelerate at approximately 9.8 m/s 2, independent of its mass. With air resistance acting on an object that has been dropped, the object will eventually reach a terminal velocity, which is around 53 m/s (190 km/h or 118 mph [4]) for a human skydiver.

  5. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  6. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    This corresponds to the fact that the potential energy with respect to infinity of an object in such an orbit is minus two times its kinetic energy, while to escape the sum of potential and kinetic energy needs to be at least zero. The velocity corresponding to the circular orbit is sometimes called the first cosmic velocity, whereas in this ...

  7. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    The linear motion can be of two types: uniform linear motion, with constant velocity (zero acceleration); and non-uniform linear motion, with variable velocity (non-zero acceleration). The motion of a particle (a point-like object) along a line can be described by its position x {\displaystyle x} , which varies with t {\displaystyle t} (time).

  8. Motion - Wikipedia

    en.wikipedia.org/wiki/Motion

    This motion can be detected as temperature; higher temperatures, which represent greater kinetic energy in the particles, feel warm to humans who sense the thermal energy transferring from the object being touched to their nerves. Similarly, when lower temperature objects are touched, the senses perceive the transfer of heat away from the body ...

  9. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    The instantaneous velocity of an object is the limit average velocity as the time interval approaches zero. At any particular time t , it can be calculated as the derivative of the position with respect to time: [ 2 ] v = lim Δ t → 0 Δ s Δ t = d s d t . {\displaystyle {\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {s ...