Search results
Results From The WOW.Com Content Network
Many probability text books and articles in the field of probability theory derive the conditional probability solution through a formal application of Bayes' theorem — among them books by Gill [51] and Henze. [52] Use of the odds form of Bayes' theorem, often called Bayes' rule, makes such a derivation more transparent. [34] [53]
Given , the Radon-Nikodym theorem implies that there is [3] a -measurable random variable ():, called the conditional probability, such that () = for every , and such a random variable is uniquely defined up to sets of probability zero. A conditional probability is called regular if () is a probability measure on (,) for all a.e.
In this situation, the event A can be analyzed by a conditional probability with respect to B. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B) [2] or occasionally P B (A).
In this sense, "the concept of a conditional probability with regard to an isolated hypothesis whose probability equals 0 is inadmissible. " ( Kolmogorov [ 6 ] ) The additional input may be (a) a symmetry (invariance group); (b) a sequence of events B n such that B n ↓ B , P ( B n ) > 0; (c) a partition containing the given event.
For example, consider the task with coin flipping, but extended to n flips for large n. In the ideal case, given a partial state (a node in the tree), the conditional probability of failure (the label on the node) can be efficiently and exactly computed. (The example above is like this.)
In probability theory, regular conditional probability is a concept that formalizes the notion of conditioning on the outcome of a random variable. The resulting conditional probability distribution is a parametrized family of probability measures called a Markov kernel .
In statistics, the conditional probability table (CPT) is defined for a set of discrete and mutually dependent random variables to display conditional probabilities of a single variable with respect to the others (i.e., the probability of each possible value of one variable if we know the values taken on by the other variables).
Assuming the "Conditional probability solution" comes immediately after the simple solutions (not separated by the lengthy "Aids to understanding" section) the point of the introductory paragraph would be to distinguish how a conditional probability solution differs from those that are presented immediately preceding.