Ad
related to: contravariant basis vectors chart with points labeled graph template excellp.scriptrunner.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
The first is that vectors whose components are covariant (called covectors or 1-forms) actually pull back under smooth functions, meaning that the operation assigning the space of covectors to a smooth manifold is actually a contravariant functor. Likewise, vectors whose components are contravariant push forward under smooth mappings, so the ...
Consequently, a general curvilinear coordinate system has two sets of basis vectors for every point: {b 1, b 2, b 3} is the contravariant basis, and {b 1, b 2, b 3} is the covariant (a.k.a. reciprocal) basis. The covariant and contravariant basis vectors types have identical direction for orthogonal curvilinear coordinate systems, but as usual ...
We can also define a reciprocal basis, or contravariant curvilinear basis, b i. All the algebraic relations between the basis vectors, as discussed in the section on tensor algebra, apply for the natural basis and its reciprocal at each point x.
In particular, if is a diffeomorphism between open subsets of and , viewed as a change of coordinates (perhaps between different charts on a manifold ), then the pullback and pushforward describe the transformation properties of covariant and contravariant tensors used in more traditional (coordinate dependent) approaches to the subject.
At each point of a manifold, the tangent and cotangent spaces to the manifold at that point may be constructed. Vectors (sometimes referred to as contravariant vectors) are defined as elements of the tangent space and covectors (sometimes termed covariant vectors, but more commonly dual vectors or one-forms) are elements of the cotangent space.
In Cartesian coordinates, the basis vectors are fixed (constant). In the more general setting of curvilinear coordinates, a point in space is specified by the coordinates, and at every such point there is bound a set of basis vectors, which generally are not constant: this is the essence of curvilinear coordinates in general and is a very important concept.
The vector is called covariant or contravariant, depending on how the transformation of the vector's components is related to the transformation of the basis. In general, contravariant vectors are "regular vectors" with units of distance (such as a displacement), or distance times some other unit (such as velocity or acceleration); covariant ...
The explicit form of a covariant transformation is best introduced with the transformation properties of the derivative of a function. Consider a scalar function f (like the temperature at a location in a space) defined on a set of points p, identifiable in a given coordinate system , =,, … (such a collection is called a manifold).