Search results
Results From The WOW.Com Content Network
Arterioles carrying blood to superficial capillaries under the surface of the skin can shrink (constrict), thereby rerouting blood away from the skin and towards the warmer core of the body. This prevents blood from losing heat to the surroundings and also prevents the core temperature dropping further. This process is called vasoconstriction.
The opposite is also true: A Biot number greater than 0.1 (a "thermally thick" substance) indicates that one cannot make this assumption, and more complicated heat transfer equations for "transient heat conduction" will be required to describe the time-varying and non-spatially-uniform temperature field within the material body.
Thermoregulation is the ability of an organism to keep its body temperature within certain boundaries, even when the surrounding temperature is very different. A thermoconforming organism, by contrast, simply adopts the surrounding temperature as its own body temperature, thus avoiding the need for internal thermoregulation.
The increase in heat is detected by thermoreceptors, a type of sensory receptor located at various points in body. These receptors send a signal to the brain that tells the body to dilate the blood vessels, including capillaries. This creates a visible change in the number of vessels on the skin. This allows for heat transfer via convection to ...
Thermal conduction is the diffusion of thermal energy (heat) within one material or between materials in contact. The higher temperature object has molecules with more kinetic energy; collisions between molecules distributes this kinetic energy until an object has the same kinetic energy throughout.
η(δ) = viscosity of blood in the wall plasma release-cell layering; r = radius of the blood vessel; δ = distance in the plasma release-cell layer; Blood resistance varies depending on blood viscosity and its plugged flow (or sheath flow since they are complementary across the vessel section) size as well, and on the size of the vessels.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Cerebral blood flow (CBF) is the blood supply to the brain in a given period of time. [8] In an adult, CBF is typically 750 millilitres per minute or 15.8 ± 5.7% of the cardiac output. [9] This equates to an average perfusion of 50 to 54 millilitres of blood per 100 grams of brain tissue per minute. [10] [11] [12]