When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Magnetic Thermodynamic Systems - Wikipedia

    en.wikipedia.org/wiki/Magnetic_Thermodynamic_Systems

    Assuming the external magnetic field is uniform and shares a common axis with the paramagnet, the extensive parameter characterizing the magnetic state is , the magnetic dipole moment of the system. The fundamental thermodynamic relation describing the system will then be of the form U = U ( S , V , I , N ) {\displaystyle U=U(S,V,I,N)} .

  3. Thermal Hall effect - Wikipedia

    en.wikipedia.org/wiki/Thermal_Hall_effect

    The Righi–Leduc effect is a thermal analogue of the Hall effect. With the Hall effect, an externally applied electrical voltage causes an electrical current to flow. The mobile charge carriers (usually electrons) are transversely deflected by the magnetic field due to the Lorentz force. In the Righi–Leduc effect, the temperature difference ...

  4. Force between magnets - Wikipedia

    en.wikipedia.org/wiki/Force_between_magnets

    The magnetic pole model predicts a correct mathematical form for this force and is easier to understand qualitatively. For if a magnet is placed in a uniform magnetic field then both poles will feel the same magnetic force but in opposite directions, since they have opposite magnetic charge.

  5. Curie temperature - Wikipedia

    en.wikipedia.org/wiki/Curie_temperature

    Ferromagnetic materials are magnetic in the absence of an applied magnetic field. When a magnetic field is absent the material has spontaneous magnetization which is a result of the ordered magnetic moments; that is, for ferromagnetism, the atoms are symmetrical and aligned in the same direction creating a permanent magnetic field.

  6. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    The force on an electric charge depends on its location, speed, and direction; two vector fields are used to describe this force. [2]: ch1 The first is the electric field, which describes the force acting on a stationary charge and gives the component of the force that is independent of motion.

  7. Curie's law - Wikipedia

    en.wikipedia.org/wiki/Curie's_law

    is the magnitude of the applied magnetic field (A/m), is absolute temperature , is a material-specific Curie constant (K). Pierre Curie discovered this relation, now known as Curie's law, by fitting data from experiment. It only holds for high temperatures and weak magnetic fields.

  8. Magnetization - Wikipedia

    en.wikipedia.org/wiki/Magnetization

    The magnetization field or M-field can be defined according to the following equation: =. Where is the elementary magnetic moment and is the volume element; in other words, the M-field is the distribution of magnetic moments in the region or manifold concerned.

  9. Earth's magnetic field - Wikipedia

    en.wikipedia.org/wiki/Earth's_magnetic_field

    A magnetic field is a vector field, but if it is expressed in Cartesian components X, Y, Z, each component is the derivative of the same scalar function called the magnetic potential. Analyses of the Earth's magnetic field use a modified version of the usual spherical harmonics that differ by a multiplicative factor.