Ad
related to: n bromosuccinimide reagent mechanism of chemical reaction
Search results
Results From The WOW.Com Content Network
N-Bromosuccinimide or NBS is a chemical reagent used in radical substitution, electrophilic addition, and electrophilic substitution reactions in organic chemistry. NBS can be a convenient source of Br • , the bromine radical.
The Wohl–Ziegler reaction [1] [2] is a chemical reaction that involves the allylic or benzylic bromination of hydrocarbons using an N-bromosuccinimide and a radical initiator. [3] Best yields are achieved with N-bromosuccinimide in carbon tetrachloride solvent. Several reviews have been published. [4] [5]
The necessary α-halo sulfones are accessible through oxidation of the corresponding α-halo sulfides with peracids such as meta-chloroperbenzoic acid; oxidation of sulfides takes place selectively in the presence of alkenes and alcohols. α-Halo sulfides may in turn be synthesized through the treatment of sulfides with halogen electrophiles such as N-chlorosuccinimide or N-bromosuccinimide.
Several reagents can be substituted for bromine. Sodium hypochlorite, [4] lead tetraacetate, [5] N-bromosuccinimide, and (bis(trifluoroacetoxy)iodo)benzene [6] can effect a Hofmann rearrangement. The intermediate isocyanate can be trapped with various nucleophiles to form stable carbamates or other products rather than undergoing decarboxylation.
This compound is also the starting material for the dibromide through N-bromosuccinimide (NBS) and silver nitrate: Cadiot–Chodkiewicz coupling application. The coupling reaction itself takes place in methanol with piperidine, the hydrochloric acid salt of hydroxylamine and copper(I) bromide. [3]
Structure of N-bromosuccinimide, a common brominating reagent in organic chemistry. Like the other carbon–halogen bonds, the C–Br bond is a common functional group that forms part of core organic chemistry. Formally, compounds with this functional group may be considered organic derivatives of the bromide anion.
Customers at a Circle K in northeast Ohio who recently went to gas up their vehicles filled their tanks not with the unleaded fuel they had selected but diesel.
Photocyclization can be used as the final step of a sequence to generate a fused aromatic ring at a benzylic position. After benzylic bromization with N-bromosuccinimide, transformation to the phosphonium salt, and a Wittig reaction with anaromatic aldehyde, photocyclization fuses the aromatic rings. Iteration of this sequence results in helicenes.