Search results
Results From The WOW.Com Content Network
In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra. [1] They may be obtained by stellating the regular convex dodecahedron and icosahedron, and differ from these in having regular pentagrammic faces or vertex figures. They can all be seen as three-dimensional analogues of the pentagram in one way or another.
In geometry, the small stellated dodecahedron is a Kepler–Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol {5 ⁄ 2,5}. It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeting at each vertex. It shares the same vertex arrangement as the convex regular icosahedron.
Pages in category "Kepler–Poinsot polyhedra" The following 5 pages are in this category, out of 5 total. This list may not reflect recent changes. ...
The regular star polyhedra are called the Kepler–Poinsot polyhedra and there are four of them, based on the vertex arrangements of the dodecahedron {5,3} and icosahedron {3,5}: As spherical tilings, these star forms overlap the sphere multiple times, called its density, being 3 or 7 for these forms.
A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...
In geometry, the great stellated dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol {5 ⁄ 2,3}. It is one of four nonconvex regular polyhedra. It is composed of 12 intersecting pentagrammic faces, with three pentagrams meeting at each vertex.
The regular star polyhedra are self-intersecting polyhedra. They may either have self-intersecting faces, or self-intersecting vertex figures. There are four regular star polyhedra, known as the Kepler–Poinsot polyhedra. The Schläfli symbol {p,q} implies faces with p sides, and vertex figures with q sides.
This is an indexed list of the uniform and stellated polyhedra from the book Polyhedron Models, by Magnus Wenninger. The book was written as a guide book to building polyhedra as physical models. It includes templates of face elements for construction and helpful hints in building, and also brief descriptions on the theory behind these shapes.